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We study the trade-off between layout elements of the search results page and revenue in the real-time
sponsored search auction. Using data from a randomized experiment on a major search engine, we find that
having images present among the search results tends to simultaneously raise the ad click-through rate
and flatten the ad click curve, reducing the premium for occupying the top slot and thus impacting bidding
incentives. Theoretical analysis shows that this type of change creates an ambiguous impact on revenue in
equilibrium: a steeper curve with lower total click-through rate is preferable only if the expected revenue
distribution is skewed enough towards the top bidder. Empirically, we show that this is a relatively rare
phenomenon, and we also find that whole page satisfaction causally raises the click-through rate of the
ad block. This means search engines have a short-run incentive to boost search result quality, not just a
long-run incentive based on competition between providers.
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[Social and Behavioral Sciences]: Economics

Additional Key Words and Phrases: whole page optimization; sponsored search; search ranking; page layout;
page elements

1. INTRODUCTION
Web search is monetized through a real-time auction for advertising slots, a practice
known as “sponsored search.” There is a substantial literature on the generalized sec-
ond price auction (GSP) used for slot allocation and pricing; see for instance [Edelman
et al. 2007; Lahaie 2006; Varian 2007]. A standard assumption in the literature is that
the incentives and payoffs present in the auction are not impacted by other elements
of the search engine results page (SERP) on which the ads appear. This assumption
is reasonable for relatively simple page layouts consisting of “ten blue links,” which
was the standard when the seminal GSP papers were published, but since then the
SERP has become increasingly less standard because of the integration of novel page
elements such as images, maps, shopping results, etc. [Arguello et al. 2009; Naval-
pakkam et al. 2013] and these page elements impact user attention [Diaz et al. 2013].
This interplay introduces strategic considerations for bidders and raises the specter of
results manipulation by search engines.

Behavioral interactions between elements of the SERP and the ad unit impact the
auction primarily through the advertising slots’ click-through rate, collectively re-

Author’s addresses: Pavel Metrikov, College of Computer and Information Science, Northeastern University,
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ferred to as the “click curve.” The slope of the click curve determines the degree to
which higher slots are superior goods and the level gives the fraction of clicks going
to ads. Since a larger bid increases both the chance of getting a higher slot and the
expected payment conditional on winning, the degree to which bidders should shade
bids down from their true value depends on the slope of the click curve. All else equal,
the flatter the curve the more one should shade because the slots are closer substi-
tutes [Gomes and Sweeney 2012]. If the impact of new page elements on user behavior
translates to a meaningful change in the click curve, and therefore bidding and rev-
enue, then this has important implications for the competitive landscape because the
auctioneer and the publisher are typically the same economic entity (namely the firm
owning the search engine). The possibility of this sort of manipulation lies at the cen-
ter of recent anti-trust litigation surrounding search monopoly in Europe [Miller and
Scott 2014].

In this paper we theoretically model the auctioneer’s optimization problem assuming
that the click curve can be impacted by changing the algorithmic results, and empiri-
cally calibrate the trade-off between algorithmic result features and ad revenue using
data from a ranking experiment on a major search engine. The experiment took a large
set of queries for which images were thought to be relevant and, instead of using nor-
mal production settings, randomized (for a fraction of traffic) the location of the image
unit into one of the first five slots in the web results section of the page or off the page
entirely. This exogenous variation allows us to estimate the true click curve for each
regime and thus the causal impact of image location.

We empirically establish that the click curve is indeed manipulable and doing so can
have a large impact on revenue. The presence of images on the SERP tends to flatten
the click curve—in particular, the top ad slot does not get as high a click-through
rate (CTR) premium as it does in the ten blue link setting. One might be tempted to
conclude that revenue maximization would involve widespread removal of images to
increase differentiation and competition for ad slots, creating a strong tension between
user experience and revenue. In fact, we find that while images reduce the importance
of the top slot, the other slots benefit from images so much that the overall CTR of
the ad-unit generally goes up, with the largest impact coming when the image is in
slots two through five (that is, not in the first slot directly below the ads). This is
consistent with eye-tracking studies and the cascade model of user attention, which
point to overall page quality as a driver of clicks on all units of the page [Joachims et al.
2005; Kempe and Mahdian 2008]. However, removing images entirely—potentially at
a cost to user experience—is optimal when most of the revenue comes from the top
bidder. We use supplementary data from a mouse-tracking experiment and confirm
the hypothesis that the initial point of attention is strongly influenced by the presence
and location of images on the SERP.

The experimental data, which comes from a fraction of traffic over a short period of
time, are insufficient on their own to understand the long-run impact of the presence of
images, or units with similar visual features, because advertisers would react if a new
policy was rolled out to 100% of traffic. We address the gap with theoretical analysis.
We show that the revenue impact of a click curve can be decomposed according to how
‘steep’ the curve is and its overall CTR. To formally assess whether a click curve is
steeper than another, we draw on the concept of majorization, traditionally used to
compare income distributions. In a novel application of the concept, we use it here to
compare how CTR is distributed across slots. Our equilibrium model shows that if the
total CTR of the ad block is held fixed, then the steeper the click curve, the higher the
revenue. A steep click curve shifts clicks towards the top slots, increasing the incentive
to bid aggressively and funneling clicks to higher bidding advertisers. However, if the
auctioneer induces a steeper click curve while also lowering the overall CTR, as we
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empirically observe for image removal, then the impact depends on the distribution of
expected revenue across the ad slots.

We take these insights to the data and show that revenue maximization reduces to
a choice between pushing an image out of the top slot (down the page) or suppressing
entirely. It turns out that suppression is rarely an optimal policy because the premium
on the top slot is only worth protecting if the expected revenue distribution is heavily
skewed towards the top bidder. For most monetizable queries, this is not a likely cir-
cumstance as they tend to appeal to many advertisers. Brand queries, such as “nike”
or “us airways” sometimes have the requisite skew but images are usually not rele-
vant for such queries. Suppressing images when the expected revenue distribution is
not sufficiently skewed significantly harms total returns and we show it also degrades
user experience metrics. Pushing the image out of the top slot to a placement down the
page can increase revenue by a considerable amount and this can often be done with
minimal or zero loss to user experience.

So while the image placement choice can (and does) create a tension between SERP
quality and ad performance, in practice the trade-off is nuanced, with ad performance
and user experience often moving in the same direction. In terms of the competitive
landscape, our findings imply that search engines do not in general have the incentive
to degrade algorithmic results to boost revenue, even in the short-run, but this tension
is typically present in at least some parts of the decision space. The positive inter-
action between user satisfaction and ad CTR means search engines have a short-run
incentive to boost algorithmic quality in many cases. Competition, such as the current
status quo of two major providers, would presumably limit manipulation in the parts
of the decision space where user metrics and revenue move in opposite directions. Con-
sidered from this angle, our results highlight the importance of competition as well.

2. BACKGROUND
Work on whole page optimization naturally draws from both the sponsored search
and web search literatures, which have traditionally existed as relatively separate
communities; see Kempe and Mahdian [2008] for a notable exception. In web search,
considerable effort has gone into modeling how a user goes about achieving their ob-
jectives. In sponsored search, effort has generally centered around mechanism design
of the auction. Whole page optimization studies this interplay so we review the related
literature from both fields here.

2.1. Web Search
Early click models of algorithmic search results factored CTRs into an attractiveness
effect and a position effect [Dupret and Piwowarski 2008]. To go beyond the restric-
tive assumptions of this model, researchers introduced models that incorporated the
attractiveness of other page elements [Carterette and Jones 2007]. The cascade model,
named to reflect the idea that a user starts at the top of the page and scrolls down,
assumes that the click-through rate of a document at a given position is dependent on
documents in higher positions [Craswell et al. 2008]. The Dynamic Bayes Net model
extends the cascade model by explicitly modeling relevance (as opposed to clicks) and
allowing the user to select multiple relevant documents [Chapelle and Zhang 2009].

Past work motivates our hypothesis that novel page elements interact with click
dynamics on the ad unit. The Partially Observable Markov model demonstrates that
non-web (everything except the ten blue links) elements such as query suggestions af-
fect user interaction on the SERP [Wang et al. 2010]. Analysis of mouse-tracking data
also demonstrates that user interactions with the SERP are dependent on non-web
verticals [Diaz et al. 2013]. Furthermore, controlled experiments have demonstrated
the impact of the quality and relevance of non-web results on user satisfaction and
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task performance [Arguello and Capra 2012; McCay-Peet et al. 2012; Navalpakkam
et al. 2013].

2.2. Sponsored Search
When a user enters a query into a search engine, an auction is run to select and display
ads on the page alongside the search results. Let m be the number of available ad slots
and let n > m be the number of candidate ads. The sponsored search auction used by
major search engines is known as the generalized second-price auction (GSP) [Edelman
et al. 2007]. Its specification consists of ranking and payment rules.

Each ad i is associated with a bid bi together with a quality score wi determined
by the search engine. Ads are ranked in decreasing order of their weighted bid wibi.
Throughout, we re-index the ads so that w1b1 ≥ w2b2 ≥ · · · ≥ wnbn. Therefore ad i is
allocated to slot i, unless i > m in which case the ad is not shown. In sponsored search
an advertiser is charged only when a click is received, and the GSP uses a second-price
payment rule: the ad is charged the lowest bid that would maintain its position. This
implies advertiser i’s bid must satisfy wibi ≥ wi+1bi+1 to maintain position i, which
leads to a cost per click (CPC) of wi+1bi+1/wi. In practice search engines also impose
reserve prices and various relevance filters on the ads, and must also select an ad
layout besides the ranking (e.g., how many ads to show at the top of the page versus
the side).

Let cis denote the expected click-through rate (CTR) of ad i in slot s. Following
the sponsored search literature, we assume that CTRs factor into an ad effect ei
and a position effect xs, so that cis = eixs. Search engines place substantial re-
sources into estimating ad effects because they are key inputs into the ad weights
used for ranking [Graepel et al. 2010; Richardson et al. 2007]. In this work the focus
is on the position effects and their impact on revenue. The vector of position effects
x = (x1, . . . , xm) is called a click curve and we assume it is monotonically decreasing:
x1 ≥ x2 ≥ · · · ≥ xm.

It is well known that the GSP is not a truthful auction, meaning that it is not op-
timal for advertisers to bid their true value per click (i.e, willingness to pay), denoted
vi for ad i. When there is more than one ad slot, bids are shaded down from actual
values [Lahaie 2006]. The advertiser’s bid choice depends on vi, the relative position
effects of the different slots, and the opponents’ bids. The next section examines in de-
tail the potential revenue impact of distorting a query’s click curve taking into account
potential advertiser reactions via their bids.

3. THEORETICAL MODEL
Before discussing our experimental results let us introduce our theoretical framework.
The framework will guide the interpretation of the experimental results, allowing us to
understand the impact of click curve distortion not just for the short-run, but also once
bids have reached an equilibrium (i.e., steady state). The standard notion of equilib-
rium for the GSP is symmetric equilibrium, also known as envy-free equilibrium [Edel-
man et al. 2007; Varian 2007]. In a symmetric equilibrium, every ad’s allocated slot
maximizes the advertiser’s utility (expected value minus price) holding the opponent
bids fixed. Furthermore, weighted bids wibi are increasing in weighted values wivi, so
ads are in fact ranked by weighted value even though bids do not equal values. We
refer to Varian [2007] for an exact definition and a full treatment of the equilibrium’s
various properties, and here will only mention the relevant ones for the purpose of
revenue analysis.
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3.1. Equilibrium Revenue
Symmetric equilibrium is a useful concept to reason about revenue because the set of
symmetric equilibria form a lattice. In particular, for fixed advertiser values there are
minimum and maximum equilibria, which thus provide lower and upper bounds on
possible equilibrium revenue. We will consider the lower bound since it is the conser-
vative estimate, but the results below are easy to adapt to the maximum equilibrium
and the general insights are the same.

For simplicity we assume that each ad has a weight and ad effect of 1. Under the
ranking and pricing rules of sponsored search, the revenue as a function of the click
curve is then

R(x) =
m∑
s=1

xsbs+1.

Since the bids depend on the click curve itself, we instead derive an expression in
terms of exogenous values. The lowest symmetric equilibrium bids are in fact given by
a closed-form formula:1

xsbs+1 =

m+1∑
t=s+1

vt(xt−1 − xt). (1)

To evaluate the expected revenue we treat the advertiser values as random variables
and assume they are drawn i.i.d. from a common distribution. Let Vt be the t-th highest
value among n draws from the distribution. We have the following characterization of
expected equilibrium revenue.

PROPOSITION 3.1. The expected revenue in lowest symmetric equilibrium is given
by

E[R(x)] =

m∑
t=1

xtE [tVt+1 − (t− 1)Vt] , (2)

where the expectation is taken with respect to the advertisers’ common value distribu-
tion.

PROOF. Summing (1) over all slots, we obtain

R(x) =
m∑
s=1

m+1∑
t=s+1

vt(xt−1 − xt)

=
m+1∑
t=1

t−1∑
s=1

vt(xt−1 − xt)

=
m+1∑
t=1

(t− 1)vt(xt−1 − xt)

=
m∑
t=1

xt(tvt+1 − (t− 1)vt).

Treating values as random variables and taking the expectation of both sides com-
pletes the result.

1For readers familiar with auction theory, an ad’s lowest symmetric equilibrium bid is the VCG payment of
the advertiser one slot above [Edelman et al. 2007; Varian 2007].
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According to (2) we see that the expected revenue as a function of the click curve will
depend on the monotonicity properties of the random variable

Pt = tVt+1 − (t− 1)Vt. (3)

The expectation of Pt, denoted P̄t, can be easily evaluated numerically or even ana-
lytically for certain value distributions. The following result establishes monotonicity
for a large class of distributions. The hazard rate of a distribution F is defined as
f(v)/(1 − F (v)), where f is the corresponding density for F . The hazard rate is a con-
cept that often arises in auction theory and reliability theory.

PROPOSITION 3.2. The expectation P̄t is monotonically increasing with higher slots
if the value distribution has an increasing hazard rate.

PROOF. Let Dt = t(Vt − Vt+1), which is known as the t-th normalized spacing. Note
that Pt = Vt −Dt. Barlow and Proschan [1966, Cor. 5.2] have shown that if the under-
lying distribution has an increasing hazard rate, then Dt+1 stochastically dominates
Dt. In particular, this implies that E[Dt] ≤ E[Dt+1]. This combined with the fact that
E[Vt] ≥ E[Vt+1] by definition yields the result.
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Fig. 1. Monotonicity of P̄t for the lognormal and Pareto distributions with four slots and five bidders. For
the lognormal, the mean log is set to 0.5 and the standard deviation parameter σ is varied. For the Pareto,
the location is set to 1 and the shape parameter α is varied. Each point is an average over 10, 000 draws.

Many common distributions exhibit increasing hazard rate including the uniform, nor-
mal, exponential, and Weibull distributions. However, the lognormal and Pareto dis-
tributions, two natural distributions for advertiser value, do not satisfy this property.
Note that Proposition 3.2 only provides a sufficient condition, and it is apparent from
the proof that P̄t may be increasing even with decreasing hazard rate.2

Figure 1 plots estimates of P̄t for four slots and five bidders under the lognormal
and Pareto distributions. The range of parameters was chosen taking into account
estimates for value and bid distributions from the literature. For instance, Lahaie and
Pennock [2007] report a lognormal value distribution with parameters µ = 0.35 and
σ = 0.71, which leads to a curve very similar to the one for σ = 0.75 in the figure. Both

2One plausible conjecture is that P̄t is monotone increasing if the value distribution is regular in the sense
of Myerson [1981]. This condition is more general than increasing hazard rate, but it would still not cover
the practical case of the lognormal distribution.
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the lognormal and Pareto plots show a pattern of steeper curves as tails get heavier
(higher σ and lower α). The only non-monotone curve occurs for the lognormal at σ = 2,
which has a very heavy tail. These plots suggest that non-monotonicity should not be
common in practice.

3.2. Revenue Variation
We have found that an informative way to compare click curves is to consider how
‘unequally’ total CTR is allocated across slots in the curves, drawing on the concept of
majorization.3 See Marshall and Olkin [1979] for an in-depth treatment of the mathe-
matical theory of majorization.

To understand the relevance of the concept, consider the click curves (1, 0, 0) and
(1/3, 1/3, 1/3). Both have the same aggregate position effect, and in the first case there
is effectively just one slot. The first click curve is intuitively more unequal than the
second. Now suppose there are three ads. When there is just one effective slot (the
first case), the GSP reduces to the classic second-price auction, which induces truthful
bidding. Therefore the revenue will be the second-highest value per click. When all
slots have equal position effects an advertiser receives the same utility no matter what
its bid, and so it is an equilibrium for all to bid zero, generating zero revenue. Thus
moving to a more ‘equal’ click curve in this extreme example eliminates all revenue.

For a click curve x, let its norm be |x| =
∑

s xs, namely the aggregate CTR in the
curve. A click curve y majorizes x, written x ≺ y, if |x| = |y| and y can be obtained from
x by a series of transfers of CTR from lower slots to higher slots, provided that each
transfer preserves the monotonicity of position effects. That is, we consider transfers
of the form

(x1, . . . , xi + δ, . . . , xj − δ, . . . , xm)

where δ > 0, for sufficiently small δ to keep the decreasing order intact. An equivalent
definition that is more convenient to verify is that x ≺ y if

k∑
s=1

xs ≤
k∑

s=1

ys (k = 1, . . . ,m) (4)

with the case of k = m holding with equality (i.e., |x| = |y|). The majorization order can
only compare two click curves if their norms are equal. It captures how ‘unequally’ CTR
is allocated among slots, so for a proper comparison click curves must be normalized to
a common norm. Also, majorization is just a partial order, so click curves x and y may
be incomparable even if |x| = |y|.

Recall formula (2) for the expected revenue in equilibrium given a click curve. To
assess the change in revenue when moving from curve x to x′, we separate the change
into two parts:

m∑
s=1

x′sP̄s −
m∑
s=1

xsP̄s

=
m∑
s=1

x′sP̄s −
|x′|
|x|

m∑
s=1

xsP̄s︸ ︷︷ ︸
equivalent variation

+
|x′| − |x|
|x|

m∑
s=1

xsP̄s.︸ ︷︷ ︸
compensating variation

3Majorization is very closely related to the concept of the Lorenz curve, originally developed to quantify
inequality in income distribution [Lorenz 1905].
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The equivalent variation captures the change in revenue due to shifting CTR between
slots by comparing click curves x′ and (|x′|/|x|)x, which have the same norm. The com-
pensating variation captures the change in revenue due to the percent increase (or
decrease) in aggregate CTR. With a slight abuse of terminology, we say that the equiv-
alent variation is “increasing in the majorization order” if it is non-negative whenever
x ≺ x′ (after normalizing for comparison), namely the new click curve majorizes the
old one.

THEOREM 3.3. The equivalent variation is increasing in the majorization order if
and only if P̄s is monotone increasing with higher slots.

PROOF. Let x̃ = (|x′|/|x|)x. Assume w.l.o.g. that x̃ ≺ x′, so that x′ can be obtained
from x̃ by a series of transfers of CTR from lower to higher slots. If P̄s is increasing
with slots, then each transfer increases the equivalent variation. Conversely, suppose
there is a slot t where P̄t < P̄t+1. Take two click curves x and x′ that differ only in
a small transfer of clicks from t + 1 to t to obtain x′ from x. We have that x ≺ x′ by
construction, but by assumption the transfer decreases the equivalent variation.

The simulations reported in Figure 1 establish that the equivalent variation should
be increasing in the majorization order for lognormal or Pareto distributions of bid-
der values, except for implausible parameters leading to very heavy tails. In light of
Proposition 3.2 we also immediately obtain the following.

COROLLARY 3.4. The equivalent variation is increasing in the majorization order if
the bidder’s value distribution has an increasing hazard rate.

To summarize, there are two possibly opposite impacts on revenue when moving from
one click curve to another, taking into account changes in the advertisers’ bids as
they re-equilibrate. A ‘flatter’ or more ‘equal’ click curve will have less revenue than a
‘steeper’ curve that differentiates more between slots, assuming the two curves have
the same aggregate CTR—this is the equivalent variation. However, this may be offset
if the flatter curve has a higher aggregate CTR—this is the compensating variation.
As we report in Section 4, in practice a flatter curve may have substantially more ag-
gregate CTR, so the best choice of click curve from a revenue standpoint becomes an
empirical question.

4. EMPIRICAL RESULTS
Our data comes from a controlled experiment on a major commercial search engine
during the first quarter of 2013. The goal of the experiment was to explore different
image locations for queries with features that made it likely images would be relevant
to the intent of the user. From this set of queries, we only look at those with high
commercial intent by restricting to query-instances with four ads present above the
algorithmic results. It is widely known that a majority of search engine revenue comes
from queries for which many ads are shown, which is not surprising as the presence of
many ads indicates high demand from advertisers.

We ensure that each query-instance in our data occupied all three image location
regimes we are most interested in: no image, image in the first slot, and images in slots
2–5. Each bucket thus has the same queries and the exogenous assignment to bucket—
based on the randomization step in the experiment—allows us to safely infer that
the differences in click curves we observe reflect a causal relationship between image
position and click patterns, and are not due to a spurious correlation with features of
the query. As an example of spurious correlation, it could be the case that for the set
of queries with high commercial intent, the subset with images present tend to have
higher overall CTR than those without, not due to the impact of the images but rather
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because these queries differ in other factors that directly influence CTR. (Indeed we
will see this is the case.)

There are 352,628 query-instances in our primary experimental analysis, with 2605
unique queries. In additional analysis, we loosen the sampling restrictions, which
expands the data to 634,547 query-instances in the experiment, with 8706 unique
queries. Finally, when we look at production data to understand what would go wrong
if we did not use a randomized experiment, there are over 30,000,000 query-instances.

4.1. Click Curve Estimates
We estimate the position effect curves for each experimental condition using a max-
imum likelihood approach. Suppose that we work with a sample from search engine
logs containing N records, i = 1, ..., N , each one indicating whether a query qi with an
advertisement ai displayed at mainline position si was clicked by a user (ci = 1) or not
(ci = 0). As previously mentioned and consistent with our theoretical model, a common
technique to model the probability of a click is to decompose it into the product of two
factors: quality effect and position effect [Varian 2007]. Let ea,q be a measure of the
quality of advertisement a with respect to the query q, and xs be the position effect for
any advertisement placed in slot s. Then the probability of click is modeled as:

Pr (c = 1 | ea,q, xs) = ea,q · xs. (5)

We are interested in estimating the unknown sets of parameters, {ea,q} and particu-
larly {xs}, from the search engine logs. Their likelihood, or equivalently the probability
of observed clicks for all records i = 1, ..., N (assuming independence) given these pa-
rameters is:

L ({ea,q}, {xs}) =
N∏
i=1

{
eai,qi · xsi if ci = 1

1− eai,qi · xsi if ci = 0
(6)

Then, in the parameter space, we apply coordinate ascent method with Newton-
Raphson step size (see Appendix A for details) in order to obtain maximum likelihood
estimates (MLE) for all position and quality effects simultaneously:

{e∗a,q}, {x∗s} = arg max
{ea,q},{xs}

L ({ea,q}, {xs}) . (7)

To estimate the variance of position effects estimates {x∗s} we approximate the main
diagonal values of inverted Fisher matrix:

Var[x∗s] ≈
(
−∂

2 lnL ({ea,q}, {xs})
∂x2s

)−1∣∣∣∣∣
{e∗a,q},{x∗

s}

(8)

A half-width of reported 95% confidence intervals corresponds to 1.96
√

Var[x∗s].
Table I shows the estimated click curves and their partial sums after normalizing

each to norm 1. We place the experimental conditions into three groups: Image at 1,
Image below 1 and No Image. The second group includes more than one image place-
ment because we did not observe significant differences across these positions in the
randomized experiment.4 The partial sums show that the curves may be compared
according to the majorization order:

Image at 1 ≺ Image below 1 ≺ No image.

4The impact probably depends on screen resolution, which would be an important factor to consider in
production serving.
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Table I. Normalized click curves and their partial sums (in bold). Ag-
gregate CTRs have also been normalized for easier comparison.

1 2 3 4 Aggregate

No image 0.385 0.245 0.210 0.160 1.000.385 0.629 0.840 1.000

Image at 1 0.335 0.257 0.217 0.191 1.0710.335 0.592 0.809 1.000

Image below 1 0.334 0.260 0.219 0.187 1.1070.334 0.594 0.813 1.000

The ordering reflects how the curves relate to each other in terms of revenue when
considering only the equivalent variation. On the other hand, the aggregate column
shows that Image below 1 has 10.7% higher norm than No image, while Image at 1
has 7.1% higher norm. Therefore Image below 1 dominates Image at 1 in terms of
both equivalent and compensating variations, so should lead to higher revenue in both
the short- and long-term. However, there is a trade-off between the two effects when
comparing SERPs with images removed versus pushed down below the first position.
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Fig. 2. Position effect curve by image location. Panel A: Estimates taken from MLE estimation using the
image-explore experiment restricted to queries appearing in all three experimental conditions; Panel B:
Estimates taken from MLE estimation over production data

The click curves are presented graphically in Panel A of Figure 2 (for numerical values
refer to Appendix B). The y-axis uses an arbitrary normalization factor. As in Table I,
we restrict to queries that appear in each experimental condition to ensure that each
bucket has the same queries (n = 352, 628). The solid line shows the experimental
condition where images are randomized off the page. In this case the average slope
is steeper, with ad position 1 getting more clicks and ad positions 2–4 getting fewer
clicks as compared to both curves with images present. The increased steepness is
most pronounced between ad positions 1 and 2. Comparing Image at 1 to Image below
1, it is easy to see the former is dominated and that these curves have similar slopes.
The error bars give 95% confidence intervals—in aggregate the differences we quote
are statistically significant beyond all conventional levels.

To improve statistical power, we relaxed the restriction that a query must occupy all
three experimental conditions and instead required that a query occupy at least two
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experimental conditions. This doubles our sample size to 634,547. The new click curve
estimates were nearly identical to those shown in Figure 2 Panel A (which is exactly
what one would expect given the randomization) and the precision of the estimates
improves considerably, with point-wise statistical significance now achieved for nearly
all relevant comparisons. For the sake of brevity we do not include this figure in the
paper but it is available from the authors.

In order to highlight the importance of randomized experiments to infer the causal
effects, we plot click curves by image location using production data in Panel B of
Figure 2. In Panel B each plotted line, instead of indicating an experimental condition,
represents the production serving decision for one week of all US-located queries. It
turns out that less than a quarter of queries with four ads at the top have images
anywhere on the page; accordingly, these queries dominate the No image cluster. This
makes sense, as many queries with commercial intent, such as “car insurance,” have
no relevant images to display. Since different queries constitute the data for each curve
in Panel B, we would expect different click patterns due to differing characteristics of
the queries outside of the direct impact of images. In fact this is precisely what we
observe: Image at 1 has the steepest curve and the highest CTR for the first ad slot.
This is the precise opposite of the pattern we found using the randomized flight. The
explanation is that Panel B shows correlations. Since one should only intervene into a
system based on true causal effects (Panel A), the estimates shown in Panel B would
produce a flawed plan of action.5

4.2. Revenue Impact
Returning to our theoretical analysis, calibrating the model with the click curve given
in Figure 2 Panel A establishes that serving images at web position 1 is never optimal
revenue-wise, highlighting a potential tension between user experience and revenue—
we will study this in detail further on. The calibrated model also posits that comparing
the steeper No image click curve and the flatter but higher overall CTR Image below 1
curve depends on the distribution of advertiser values. Obtaining advertiser valuations
directly is not possible because the GSP does not induce truthful bidding. Additionally,
the experimental changes occurred on a small fraction of traffic for a limited period of
time, meaning we would not expect an advertiser response. As such, we cannot assess
full equilibrium behavior in our empirical analysis. We can, however, simulate an on-
line decision of how to arrange page elements based on the standing bid distributions
for that query-instance. If the changes to the page layout persisted, then bids would
eventually respond and our theoretical model gives the expected direction of change.
We note this where appropriate.

We simulate an online decision with a straightforward procedure: for a given query-
instance, take the advertiser quality effects and CPCs (information that is actually
available before serving the page) and determine which image placement is predicted
to have higher revenue. Recall that according to our analysis in Section 4, showing an
image will be optimal if the overall lift in clicks (compensating variation) overcomes the
decrease in revenue that arises from flattening the click curve (equivalent variation).

In the following figures each plot corresponds to the optimal serving decision using
this procedure. The y-axes in all figures have been obscured by multiplying by a ran-
dom scalar to protect business interests. The decision to suppress vs. push down is
driven by both the CPC and CTR. Figure 3 Panel A shows that CPC distributions look

5As a note, the relevant question we address is, “For the queries that do have images, what is the impact
of manipulating their location?” One could ask the question, “For queries on the borderline between includ-
ing images or not, should one introduce images to improve ad performance?” Our experiment is unable to
address this interesting extension.
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quite similar across query-instances where suppression is revenue optimal and those
where pushing down the page is optimal. The intuition is that it is not high CPC in the
first slot that motivates us to suppress images, rather it is a combination of CPC and
CTR. We refer to the quantity CPC × Quality as “expected revenue”, normalized for
position, as quality is the prediction of the ad’s innate tendency to draw clicks as esti-
mated via the maximum likelihood procedure. The CPC×Quality distributions given
in Figure 3 Panel B show the required skew in expected revenue necessary to justify
suppression—we only suppress when a huge fraction of revenue is expected to come
from the top slot.
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Fig. 3. CPC distribution (Panel A) and expected revenue distribution (CPC weighted by ad quality, Panel
B) for recommendations No image and Image below 1.

The decision to suppress requires a rare set of circumstances—without a big skew, op-
timizing for revenue keeps images on the page. It stands to reason that there is a set of
queries where we would not suppress images in the short-run, but since a steeper click
curve generally induces more aggressive bidding in equilibrium, we would want to in
the long-run. Our decision to suppress is thus conservative and the resulting set is
smaller than implied by long-run equilibrium. However, as we discuss below, suppres-
sion can negatively impact user experience, pushing back on the revenue incentive.

Table II shows the revenue impact by comparing our predicted optimal choice to the
other image positions. We can do this because although we did not control placement
directly in the experiment, by chance the optimal layout was chosen quite frequently
due to the randomization at play. We have scaled the numbers to protect business
interests by multiplying by a common scalar. The main diagonal (in bold) exceeds the
sub-optimal placements by a margin of 7–10%, powerful evidence that optimizing page
layout can have important revenue consequences. For both policies, we would expect
bids to increase in the long-run—in the No Image case due to the steepness of the
curve, in the Image below 1 case due to the level shift in CTR—thus the short-run
analysis tends to underestimate the long-run revenue impact.

Table II. Revenue Impact by Optimal Image Prediction.

Actual position Predict No Image Predict Slots 2–6

No image 298.6 236.4
1 249.8 255.5

2–6 261.4 275.7
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Table II also shows that in many cases taking images off the page hurts revenue.
In the second column we recommend putting the image in web slots 2–6. In this case,
suppressing the image entirely would significantly damage revenue as compared to
even putting it at the first slot below the ads—damaging the quality of algorithmic
results hurts the tendency of the ad unit to draw clicks. Further on we will examine
mouse-tracking data that indicates this is due to lower attention given to the relevant
area of the ad unit; past work has found similar effects with eye-tracking data [Granka
et al. 2004]. It turns out that empirically the interplay between algorithmic results and
ads is nuanced; user experience and revenue metrics can move in the same or opposite
directions.

One might be concerned that, once this sort of policy was rolled out, advertisers
would have the incentive to manipulate the serving decision with their bids. We first
note that our serving decision is based on expected revenue—given the second price
bidding rule, this will not depend on one’s bid (conditional on position) and thus limits
the ability for this sort of manipulation. Moreover, the envy-free condition we typically
use limits the ability of bidders to impact the CPC of their competitors without an
immediate response.

4.3. User Experience
We now look at how user experience metrics varied across the revenue-optimal im-
age location. The experiment was conducted with randomization at the query-instance
level, meaning that within a search session, a user could be in both treatment and
control. This means we can only look at “page-level” metrics as opposed to metrics
recorded for a “search session.” An important page metric is the satisfied click rate,
namely the fraction of SERPs that lead to a click with a dwell time longer than thirty
seconds [Wang et al. 2009]. We present this analysis in Table III (with values multi-
plied by a random scalar to protect business interests). When we recommend pushing
the image down the page, we find that when the image is instead suppressed entirely,
satisfied click rate significantly falls, as does the satisfied click rate on the ad unit. This
is a lose-lose proposition—again showing that suppression is by no means a generally
revenue enhancing strategy.

Table III. Satisfied CTR Impact by Optimal Image Prediction. Units multiplied by a random
scalar to protect business interests.

(a) Web Satisfied CTR

Actual position Predict Predict
No Image Slots 2–6

No image 6.957 8.831
1 7.915 9.188

2–6 7.076 9.461

(b) Ad Satisfied CTR

Actual position Predict Predict
No Image Slots 2–6

No image 21.49 16.04
1 19.47 18.60

2–6 21.34 18.91

For suppression-optimal query instances, the web satisfied click rate is lower when
images are suppressed or moved down the page rather than placed at the top spot,
with the largest damage coming from suppression. This highlights the tension between
user experience metrics and revenue in this case. Furthermore, pushing images down
the page significantly lowers the likelihood they are clicked, consistent with past work
on “position bias” [Craswell et al. 2008]. Obviously if the image is suppressed, it cannot
be clicked. Since both revenue-optimal policies result in lower CTR on the image-unit,
user experience consequences that are not captured in satisfied click rate should also
be considered for the final serving decision.
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Fig. 4. Initial mouse fixation for three arrangements which have an ad at the top of the SERP. Distribution
values do not include non-mainline probabilities and have been multiplied by a random scalar to protect
business interests.

The user experience metrics show that there are instances where user experience
and ad revenue move in the same direction. This is seen most clearly in our finding
that suppressing images is often bad for both. Eye-tracking studies have suggested this
effect in the past [Granka et al. 2004]. One potential reason for this is that, although
cascading down the page is common, most people inspect results below the link they
eventually click [Joachims et al. 2005], which helps explain why elements down the
page can impact the CTR of the ad-unit at the top of the page. In the case of image
suppression, there are fewer clicks on the ad unit overall, but this is recovered by
the revenue gained from the top slot. User metrics, however, tend to drop in this case.
Long-run optimization involves striking a balance between these competing incentives.

4.4. Understanding the User Attention Mechanism
Past work using eye-tracking technology suggests that the impact of page elements
on the ad click curve occurs through altered visual attention. We believe that mea-
sures of visual salience may thus provide insight into the mechanisms driving our
experimental results. We investigate this hypothesis with data gathered from user
mouse movement for a fraction of non-randomized production traffic [Diaz et al. 2013].
Mouse movement has been shown to correlate with visual attention on SERPs [Rodden
and Fu 2007]. Because these data were not collected as part of a randomized exper-
iment, the behavioral patterns will be biased by user intent. However, before a page
is rendered, a user is (very likely) unaware of the geometric arrangement of units on
the page. Our strategy is therefore to measure the user’s mouse fixation in the first
few milliseconds after the SERP renders. This procedure should produce an unbiased
measure of the initial point of focus.6

We present the cursor distribution over positions for three arrangements which in-
clude an ad-unit at the top of the page in Figure 4. Users are 20% more likely to
initially focus at the top of the page when there is no image present. When an image
is presented at the first position, immediately after the ad unit, users’ visual attention

6Some bias may still be introduced if we believe the user’s intent affects her initial mouse fixation.
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initially fixates on this position, drawing attention from both higher and lower units.
This effect is present when the image is at lower positions—attention is more likely to
start down the page—but the aggregate impact is diminished for these arrangements.
In fact, the ad unit engagement is slightly higher when the image is down the page as
compared to when the image is at the first position.

As we discussed earlier, without a randomized experiment, the worry is unobserved
factors can contaminate the analysis. In comparing Panels A and B of Figure 2 the
culprit was query composition. Query composition and varying user intent are a con-
cern here as well. Total click volume and other patterns will be biased by these factors,
but our maintained assumption is that initial attention focus is not. If this assump-
tion holds, at least approximately as is our view, then the mouse-tracking data provide
strong support for the hypothesis that visual attention mediates that interplay be-
tween SERP features and the ad unit.

4.5. Query Clusters
We examined the top 100 queries (by revenue) in each policy decision. Queries in the
suppress group tended to be brand terms, such as “nike shoes,” whereas queries in the
down-the-page group tended to be broader product descriptions, such as “basketball
shoes.” The intuition is that the highly skewed expected revenue distribution neces-
sary to make suppression the optimal decision is unlikely to occur on broader queries
because these queries are typically attractive to a wide range of advertisers. We saw
the CPC distributions were similar across the optimal serving decision, which means
in the suppression case the top bidder must very clickable relative to bidders 2–4.
Since he is also paying a relatively high CPC, this means there must be a very high
second bid, likely a competitor trying to scoop a valuable brand term. We also note that
the differing user intent for brand queries is a likely reason that removing images on
brand queries only has a muted negative impact on user experience, whereas removing
images on more “categorical” queries significantly hurts user experience.

5. DISCUSSION AND CONCLUSION
Whole page optimization studies the interplay between SERP features and the incen-
tives and behavior in the sponsored search auction. We have studied the case of images,
but similar analysis could be applied to maps, shopping verticals, local results and so
on. From an applied game theory perspective this interplay implies that bidding op-
timally is a complex task requiring knowledge of SERP features, such as the location
of images and other visual elements. Standard analytics might not be sufficient to up-
date one’s bid and we would thus expect market participants to profit from the use of
screen scrapes and other novel data to help optimize a bidding strategy.

We theoretically show that if the search engine can manipulate the click curve with
features of the algorithmic search results page, then it can alter equilibrium bidding
behavior and expected revenue in the ad auction. The relevant questions are to what
degree is this sort of manipulation possible and what are the returns to such manipula-
tion. If manipulation is easy and profitable, then we would worry that search engines,
especially a monopolist, might degrade results quality to boost revenue.

We empirically establish that the click curve is indeed manipulable and doing so can
have a large impact on revenue. However, at least for the case of images, to increase
clicks on the top slot the search engine must sacrifice the total click-through rate of
the ad unit. This is consistent with past work that degrading an element of the search
page can reduce the CTR and attention on other page elements. Theoretical analysis
shows that this sort of change creates an ambiguous impact on revenue in equilibrium:
a steeper curve with lower total CTR is preferable only if the expected revenue distri-
bution is highly skewed to the top bidder. Empirically we find that the skew necessary
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to suppress entirely is a relatively rare phenomenon. Moreover, removing images on
queries which lack this large skew significantly hurts revenue and is worse than even
placing the image in the top slot. The implication is that search engines do not have
a dominant incentive in this domain to degrade algorithmic results in order to boost
revenue, even in the short-run. However, we also find that pushing images out of the
top web results slot increases revenue almost universally, which can create a user ex-
perience versus revenue trade-off, although this is query dependent.

We can see now how the results inform the debate on competition in the search en-
gine market. Principles from the economics literature assert that the degree to which
we should guard against monopoly depends on how exerting market power impacts
consumers. In this light, our findings paint a nuanced picture. On one hand, search
quality and ad CTR often move in the same direction, meaning a monopolist would
have an incentive to use page elements to boost algorithmic result quality even in the
absence of competitive pressure. On the other hand, the choice becomes a true trade-
off in other parts of the decision space. In the current marketplace with two main
competitors, competition presumably restrains the degree to which search engines can
(or should) degrade user experience to maximize revenue in cases where this tension
exists.
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A. NEWTON-RAPHSON METHOD FOR CLICK CURVE ESTIMATES
We perform Newton-Raphson approach to solve equation (7) by iteratively re-
estimating parameters of interest until they converge:

{ea,q}, {xs} := {ea,q}, {xs} −H−1∇{ea,q},{xs} lnL ({ea,q}, {xs})

Here H is a Hessian, i.e. a square matrix of second derivatives of lnL with respect to
{ea,q}, {xs}. In order to make computation tractable (H is huge in our experiments), we
compute only the main diagonal elements of H, assuming zeroes everywhere else. The
first and second derivatives of the logarithm of likelihood function can be expressed
in a closed form and can be efficiently recomputed on each iteration of the coordinate
accent:

∂ lnL ({ea,q}, {xs})
∂xs

=
∑

i:ci=1,
si=s

1

xs
−
∑

i:ci=0,
si=s

eai,qi

1− eai,qi · xs

∂ lnL ({ea,q}, {xs})
∂ea,q

=
∑
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ai=a,
qi=q

1

ea,q
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∑
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xsi
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)2

∂2 lnL ({ea,q}, {xs})
∂e2a,q

= −
∑

i:ci=1,
ai=a,
qi=q

1

e2a,q
−
∑

i:ci=0,
ai=a,
qi=q

(
xsi

1− ea,q · xsi

)2
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B. POSITION EFFECT CURVES: NUMERICAL VALUES

Table IV. Position effect curve estimates by image location
along with 95% confidence intervals.

(a) Randomized controlled trial

Ad No Image Image at Image at
Position Slot 1 Slots 2–6

1 1.70 ± 0.03 1.59 ± 0.05 1.63 ± 0.02
2 1.08 ± 0.05 1.22 ± 0.07 1.27 ± 0.03
3 0.93 ± 0.06 1.03 ± 0.07 1.07 ± 0.03
4 0.71 ± 0.06 0.90 ± 0.07 0.92 ± 0.04

(b) Production data

Ad No Image Image at Image at
Position Slot 1 Slots 2–6

1 1.87 ± 0.02 1.92 ± 0.03 1.71 ± 0.02
2 1.03 ± 0.05 0.82 ± 0.03 1.17 ± 0.04
3 0.77 ± 0.05 0.72 ± 0.03 0.92 ± 0.04
4 0.67 ± 0.05 0.67 ± 0.04 0.77 ± 0.04
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