
Learning to Rank with Labeled Features

Fernando Diaz
Microsoft

fdiaz@microsoft.com

ABSTRACT
Classic learning to rank algorithms are trained using a set
of labeled documents, pairs of documents, or rankings of
documents. Unfortunately, in many situations, gathering
such labels requires significant overhead in terms of time
and money. We present an algorithm for training a learning
to rank model using a set of labeled features elicited from
system designers or domain experts. Labeled features in-
corporate a system designer’s belief about the correlation
between certain features and relative relevance. We demon-
strate the efficacy of our model on a public learning to rank
dataset. Our results show that we outperform our baselines
even when using as little as a single feature label.

CCS Concepts
•Information systems → Learning to rank;

Keywords
learning to rank

1. INTRODUCTION
Ranking is a fundamental subproblem of information re-

trieval research. Much of the early work in information re-
trieval studied text ranking in general and resulted in the
development of several core retrieval functions. Ranking sig-
nals such as BM25 [16] have the advantage of portability to
new domains, with little or no parametric tuning necessary
for effective performance. Conversely, modern retrieval sys-
tems often employ machine learning to tune a large number
of ranking function parameters by using a set of labeled
query-document pairs [11].

Despite the success of machine learned ranking models,
acquiring labeled data remains a pain point for system de-
signers and researchers. Gathering editorially judged data
requires nontrivial overhead in terms of time (e.g. draft-
ing relevance guidelines, training assessors, waiting for judg-
ments) and money (e.g. developing an annotation system,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICTIR ’16, September 12-16, 2016, Newark, DE, USA
c© 2016 ACM. ISBN 978-1-4503-4497-5/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2970398.2970435

paying assessors). By the same token, gathering user inter-
action data (e.g. clicks) requires an existing ranking system
that already performs well, usually as a result of training
from editorial data. This is not to mention the prerequisite
of already having users. Enterprise search scenarios high-
light the problems with traditional methods of learning to
rank. Enterprise search providers must design systems with
little or no knowledge about the target queries or corpus; of-
ten they default to a standard ranking signal such as BM25.
Enterprise search customers, on the other hand, do not have
the expertise or resources to gather or train models based
on editorial or behavioral data. As a result, customers must
either settle for a default ranking function or handtune elab-
orate ranking heuristics.

While existing solutions such as active sampling focus on
reducing the cost of data acquisition [2, 3], these methods all
require the development of an assessment infrastructure, in-
cluding drafting relevance guidelines and training assessors.

In this paper, we contribute a new learning to rank paradigm
where a system must estimate model parameters given a set
of labeled ranking features. This problem, which we refer to
as learning to rank with labeled features, offers an opportu-
nity for saving money and time. In the context of enterprise
search, systems that learning to rank with labeled features
provide a means for customers to indicate which ranking
signals they believe are important for their domain, without
explicitly reasoning about the functional form of the final
ranking function.

2. RELATED WORK
Much of the foundational work in information retrieval

concentrated on understanding the fundamental principles
involved in text ranking. These included notions of saturat-
ing term frequency, inverse document frequency, and term
proximity. Fang et al. present many of these principles
as information retrieval axioms common across several re-
trieval models [8]. As such, we have an understanding of,
in general, what ranking signals are appropriate in different
retrieval situations.

Initializing a model with prior knowledge has received at-
tention in information retrieval. Mohan et al. present an
algorithm for incorporating domain knowledge into the first
stage of boosting [13]. Similarly, in some cases, knowledge
from a related vertical or market can be exploited to warm
start a ranking model [4, 12]. However, all of these tech-
niques require editorially labeled queries and documents.

Our work is most similar to learning classifiers from la-
beled features. While Schapire et al. introduced the prob-

41

lem of learning from feature labels [17], others have extended
this work to other modeling frameworks [15, 7]. Our work
can be seen as extending this to thread of research from
classification to learning to rank.

3. LEARNING TO RANK WITH LABELED
FEATURES

Given a query q, each document in the corpus can be rep-
resented as a vector m feature values including factors such
as the BM25 score, PageRank, and other ranking signals.
The design matrix Φq is the n×m matrix of feature values
for all n documents in the corpus. The (unobserved) rele-
vance of every document in the corpus to q is represented
in the n × 1 vector yq. For clarity, we will omit q from the
notation.

Domain experts provide the system with direction through
a set of feature labels. Each label encodes the confidence of
i being ranked above j given a difference in the feature val-
ues of i and j. For example, the expert may believe, “if the
value of the BM25 score of i is higher than that of j, then
my confidence that i � j scales linearly with the difference
in the BM25 scores.” More generally, a feature label is a) a
ranking feature name and b) a scaling factor indicating the
confidence in the judgment. In other words, if the candidate
ranking feature is k, then for two documents i and j, we
would like the expert to provide a scalar grade w̃k such that
w̃k × (Φik − Φjk) is proportional to the confidence that i is
preferred to j. A positive score indicates a positive correla-
tion between the feature difference and document ordering.
A negative score indicates a negative correlation between
the feature difference and document ordering. The magni-
tude reflects the confidence in the judgment (i.e. a score of
zero indicates no preference). The set of feature labels is
represented as a sparse m× 1 vector w̃.

As with most learning to rank problems, the goal is to
learn a function f : <m → < such that, when documents are
sorted by the value of this function, some retrieval evaluation
metric is maximized.

Whereas traditional learning to rank domains involve la-
beled documents (i.e. {〈Φq,yq〉}q∈Q), we only provide the
system with a set of unlabeled documents (i.e. {Φq}q∈Q) in
addition to w̃. An unlabeled dataset can be gathered offline
with an indexed corpus and a set of queries.

4. AN ALGORITHM
Our approach to learning to rank with labeled features

builds on existing work. Specifically, our functional form
and training method follows LambdaRank [5]. We will begin
with a review of this approach for labeled documents before
extending it to labeled features.

4.1 Maximum Entropy Learning to Rank
Given a document i, we would like to learn a linear model,

w ∈ <m, such that ranking documents by f(Φi) = wTΦi

places relevant documents near the top. In learning to rank
with labeled documents, we can train a linear function by us-
ing a pairwise ranking model. For example, we can estimate
the probability of an ordering of two documents as a logistic

function of the individual document retrieval scores [5],

p(yi > yj |Φi,Φj) =
1

1 + exp(−(f(Φi)− f(Φj)))
(1)

=
1

1 + exp(
∑

k wk(Φjk − Φik))
(2)

Notice that Equation 2 highlights that such a model is learn-
ing a maximum entropy model based on the difference in
feature values for pairs of instances. This allows us to train
a model with observed preferences between documents in-
stead of absolute document labels. The trained parameters,
w, for this model, then, can also be used to rank documents
by wTΦi. A similar intuition is used in the derivation of
SVMrank[10], although in this case we are optimizing for lo-
gistic loss. It is important to recognize that this framework
optimizes the Kendall’s τ between the model ranking and
the ideal ranking [10, Section 3] instead of a core retrieval
metric like NDCG.

When using labeled documents, we can infer a set of pref-
erence labels from the document labels (i.e. documents with
high labels are preferred to those with low labels) and con-
struct a new training set of the form, {〈i � j,Φi,Φj〉}. With
this preference data, we can learn the parameters w using
stochastic gradient descent where the gradient magnitude is
merely the prediction error,

∆ij = I(i � j)− p(yi > yj |Φi,Φj ,w) (3)

This is the approach underlying RankNet [5].
The problem with the pairwise loss is that, although re-

lated, information retrieval evaluation metrics are often sub-
tler than Kendall’s τ . Metrics such as NDCG incorporate
rank preference and graded relevance. Burges et al. intro-
duce the notion of weighting the gradients in Equation 3
with the magitude of the rank loss [5]. In practice, we mul-
tiply the gradient by the change in the metric,

αi,j ≡ |δN y
i,j | ×∆ij (4)

where we set δN y
i,j to be the change in NDCG from swapping

documents in positions i and j.
As a result update rule for stochastic gradient descent over

pairs of ordered instances is,

wt = wt−1 + γαi,j(Φi −Φj) (5)

where γ is a learning rate.

4.2 Maximum Entropy with Labeled Features
Although we cannot infer preferences from document la-

bels, we can estimate the preference with a simple model
derived from w̃. Specifically, we adopt a functional form
consistent with Equation 2,

p(yi > yj |Φi,Φj , w̃) =
1

1 + exp(
∑

k w̃k(Φjk − Φik))
(6)

where the score for document i is f(Φi) = w̃TΦi. While
there are many other methods for combining feature labels,
we leave an exploration of this for future work.

If we replace the indicator function in Equation 3 with
Equation 6, our gradient magnitude is,

∆̃ij = p(yi > yj |Φi,Φj , w̃)− p(yi > yj |Φi,Φj ,w) (7)

As with labeled documents, we multiply the gradient by the
change in the metric. Unfortunately, we cannot adopt a

42

metric based on labeled documents. Instead, we adopt a
preference-based version of NDCG [6] define as,1

N w̃(Ok) =
1

Z
∑

{(i,j):i∈Ok}

p(yi > yj |Φi,Φj , w̃)

log2(min{ρi, ρj}+ 1)
(8)

where the set Ok is defined as the top k set of documents
ordered by the model, ρi is the rank of document i in the
model ordering, and Z is a discounted preference gain of the
optimal ordering. We can compute a δN w̃

i,j , and as a result
α̃i,j , in the same way as done with document-based NDCG.

Given a large pool of unlabeled documents, U , we can
use stochastic gradient descent to train the parameters with
Equation 5, replacing αi,j with α̃i,j .

4.3 Regularization
Readers may note that, unconstrained and with the right

initialization of w, following the gradient in Equation 7 will
recover the original weights w̃, rendering the whole process
pointless. We can avoid this degenerate solution by intro-
ducing a regularization constraint that prevents the model
from concentrating too much of w in a few features. We
adopt an `2 penalty since it is of standard practice in gradi-
ent descent. This coverts our update rule into,

wt = (1− λγ)wt−1 + γα̃i,j(Φi −Φj) (9)

where λ controls how much we penalize a model for having
concentrated feature weights.

5. METHODS
We use the Microsoft Learning to Rank Dataset [14], con-

sisting of 30,000 queries, with a standard training, valida-
tion, and testing splits. Documents are represented as 136-
dimensional feature vectors, each rated on a five point rel-
evance scale. We only use relevance labels for evaluation,
never for training.2

We considered feature labels following a symmetric five
point scale, σ ∈ {−2,−1, 0, 1, 2}. We then encode this fea-
ture level information into w̃. We consider two feature la-
bel sets. The first consists of a single feature, the BM25
score of the title field, with a score of 2. In other words,
this would represent an expert being very confident that a
document with a higher BM25 score in the title should be
preferred to another with a lower BM25 score in the title.
The second feature label set consists of five features cho-
sen by an information retrieval expert. The features include
the BM25 score of the title, anchor text, and body as well
as two query independent features, PageRank and a docu-
ment quality score. Our expert has a PhD in information
retrieval and is familiar with the various feature names but
has never previously conducted research with the Microsoft
dataset. We plan on study the sensitivity of our approach
to expertise level in future work.

We use a γ of 10−5 and a regularization weight λ of 0.5.
We leave as future work the automatic tuning of these pa-
rameters absent a labeled validation set. As a baseline, we

1We adjust the gain to use the probability of preference
instead of an absolute label difference.
2We avoid using the LETOR 3.0 and 4.0 as they have
methodological issues [9]. Other datasets such as those from
Yahoo and Yandex only provide numeric feature indexes, not
interpretable names required for feature assessment.

rank documents by w̃TΦi, representing a näıve linear com-
bination of labeled features. In all cases, including for base-
lines, we perform per-query feature normalization as is cus-
tomary in the learning to rank literature.

We measure performance as a function of the number of
unlabeled queries used for estimating the model parameters
(Equation 9). For space reasons, we only present results for
the mean NDCG.

6. RESULTS
We present the performance of our model as a function

of unlabeled training set size in Figure 1. As we can see,
our trained model are able to use w̃ in order to learn a
superior dense model w. Interestingly, we are able to sig-
nificantly outperform the straightforward baseline with as
few as 100 queries for our single feature label condition and
500 queries for our multiple feature label condition. Recall
that using handcrafted ranking function such as w̃TΦi re-
mains the best approach for many domains. That said, we
found performance to be roughly 65% of that when using the
full set of labeled documents, suggesting that, if available,
system designers should use these judgments.

In order to understand the model, we can inspect the fea-
ture weights w in Table 1. Both of our models demonstrate
that highly weighted features tend to be correlated with the
labeled features. For example, labeling the BM25 title re-
sults in a model which also highly weights other representa-
tions of the title field. Similarly, the model learned from ex-
pert feature labels heavily weights anchor text features, not
only because these are correlated with the labeled anchor
feature but also because they are correlated with the combi-
nation of other labeled features. The PageRank feature re-
mains highly weighted because it is unlikely to be correlated
with other features based mostly on the content. Interest-
ingly, across both conditions we notice negative weights for
features associated with document length and URL length.
This suggests that very long documents or those deep in a
website hierarchy are unlikely to be preferred by our labeled
features.

7. CONCLUSION
Because unlabeled documents feature vectors can be easily

gathered offline, we believe methods based on labeled fea-
tures point to a compelling direction for low cost learning to
rank model development.

Our preliminary algorithm outperforms a straightforward
baseline but there are many opportunities for further re-
search. From a modeling perspective, we believe that novel
optimization objectives or functional forms can further im-
prove performance. This may include the development of
new preference-based evaluation metrics for training or set-
ting hyperparameters. In addition to core modeling, there is
opportunity to develop novel interfaces for eliciting feature
labels such as those developed for text classification [1].

8. REFERENCES
[1] S. Amershi, M. Chickering, S. M. Drucker, B. Lee,

P. Simard, and J. Suh. Modeltracker: Redesigning
performance analysis tools for machine learning. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, pages 337–346,
2015.

43

0 5000 10000 15000 20000

0.426

0.428

0.430

0.432

0.434

0.436

0.438

0.440

training queries

N
D
C
G

(a) BM25 title feature label

0 5000 10000 15000 20000

0.444

0.445

0.446

0.447

0.448

0.449

training queries

N
D
C
G

(b) Expert feature labels

Figure 1: Results for MSLR-30k dataset with simple and
expert feature labels. The dashed line indicates the per-
formance of our baseline w̃TΦi. Shaded regions represent
one standard error across twenty five random training sam-
ples of the given size. All improvements for training size
great than or equal to 100 are statistically significant (t-test:
p < 0.001).

[2] J. A. Aslam, E. Kanoulas, V. Pavlu, S. Savev, and
E. Yilmaz. Document selection methodologies for
efficient and effective learning-to-rank. In SIGIR,
pages 468–475, 2009.

[3] J. A. Aslam, V. Pavlu, and E. Yilmaz. A statistical
method for system evaluation using incomplete
judgments. In SIGIR, pages 541–548, 2006.

[4] J. Bai, F. Diaz, Y. Chang, Z. Zheng, and K. Chen.
Cross-market model adaptation with pairwise
preference data for web search ranking. In Proceedings
of the 23rd International Conference on
Computational Linguistics, pages 18–26, 2010.

[5] C. J. Burges. From ranknet to lambdarank to
lambdamart: An overview. Technical Report
MSR-TR-2010-82, Microsoft Research, 2010.

[6] B. Carterette and P. N. Bennett. Evaluation measures
for preference judgments. In SIGIR, pages 685–686,
2008.

Table 1: Sorted feature weights for our two feature label
sets. Models shown for 5000 unlabeled instances and λ = 1.
Labeled features are bolded.

BM25 title expert
featurek wk featurek wk

BM25-title 0.547 pageRank 0.817
normTF-title 0.469 BM25-anchor 0.392
meanNormTF-title 0.469 VSM-anchor 0.382
LMABS-title 0.403 QTermRatio-anchor 0.330
LMJM-title 0.370 QTerm-anchor 0.330
maxNormTF-title 0.362 BM25-title 0.319
minNormTF-title 0.299 normTF-anchor 0.311
VSM-title 0.253 meanNormTF-anchor 0.311
QTerm-title 0.231 maxNormTF-anchor 0.270
QTermRatio-title 0.231 quality 0.263

.

.

.
bool-URL -0.015 bool-URL -0.001
DL-anchor -0.016 siteRank -0.006
DL-body -0.016 minTFIDF-URL -0.007
lengthURL -0.018 minTF-URL -0.008
DL-all -0.018 DL-body -0.039
DL-URL -0.023 DL-all -0.040
outLinks -0.026 DL-title -0.092
pageRank -0.033 URL-length -0.129
siteRank -0.054 DL-URL -0.131
DL-title -0.164 URL-slashes -0.134

[7] G. Druck, G. Mann, and A. McCallum. Learning from
labeled features using generalized expectation criteria.
In SIGIR, pages 595–602, 2008.

[8] H. Fang and C. Zhai. An exploration of axiomatic
approaches to information retrieval. In SIGIR, pages
480–487, 2005.

[9] G. C. M. Gomes, V. C. Oliveira, J. M. Almeida, and
M. A. Gonçalves. Is learning to rank worth it? a
statistical analysis of learning to rank methods.
Journal of Information and Data Management,
4(1):57–66, February 2013.

[10] T. Joachims. Optimizing search engines using
clickthrough data. In KDD, pages 133–142, 2002.

[11] T.-Y. Liu. Learning to Rank for Information Retrieval.
Springer, 2011.

[12] B. Long, Y. Chang, A. Dong, and J. He. Pairwise
cross-domain factor model for heterogeneous transfer
ranking. In WSDM, pages 113–122, 2012.

[13] A. Mohan, Z. Chen, and K. Q. Weinberger.
Web-search ranking with initialized gradient boosted
regression trees. Journal of Machine Learning
Research, Workshop and Conference Proceedings,
14:77–89, 2011.

[14] T. Qin, T.-Y. Liu, W. Ding, J. Xu, and H. Li.
Microsoft learning to rank datasets, May 2010.

[15] H. Raghavan, O. Madani, and R. Jones. Active
learning with feedback on features and instances. J.
Mach. Learn. Res., 7:1655–1686, Dec. 2006.

[16] S. E. Robertson, S. Walker, S. Jones,
M. Hancock-Beaulieu, and M. Gatford. Okapi at
trec-3. In Proceedings of the Third Text REtrieval
Conference, 1994.

[17] R. E. Schapire, M. Rochery, M. G. Rahim, and
N. Gupta. Incorporating prior knowledge into
boosting. In ICML, pages 538–545, 2002.

44

