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ABSTRACT
In some retrieval situations, a system must search across
multiple collections. This task, referred to as federated
search, occurs for example when searching a distributed in-
dex or aggregating content for web search. Resource selec-
tion refers to the subtask of deciding, given a query, which
collections to search. Most existing resource selection meth-
ods rely on evidence found in collection content. We present
an approach to resource selection that combines multiple
sources of evidence to inform the selection decision. We de-
rive evidence from three different sources: collection docu-
ments, the topic of the query, and query click-through data.
We combine this evidence by treating resource selection as
a multiclass machine learning problem. Although machine
learned approaches often require large amounts of manually
generated training data, we present a method for using au-
tomatically generated training data. We make use of and
compare against prior resource selection work and evaluate
across three experimental testbeds.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Miscella-
neous

General Terms
Algorithms

Keywords
federated search, distributed information retrieval, resource
selection, query classification

1. INTRODUCTION
Classic information retrieval systems model search under

the assumption of a centralized index. Federated search sys-
tems model search across multiple, distributed collections.
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We focus on one subtask of federated search, resource selec-
tion, the task of deciding, given a query, which collections
to search. The objective of resource selection is to select a
few collections whose merged ranking approximates the per-
formance of a ranking generated by searching a centralized
index of all collection content.

Traditional approaches to resource selection model the rel-
evance of a collection by analyzing documents from the col-
lection. For example, relevance can be modeled by com-
paring the text in the query to the text in a collection with
metrics used in document retrieval [26, 5, 23]. Relevance can
also be modeled as an expectation of the number of relevant
documents in a collection as in the ReDDE system [9, 21].
Parameters for these models are usually tuned manually on
a small set of training queries.

In this work, we model a collection’s relevance based on
its impact on a full-dataset retrieval, one that merges con-
tent from all collections. We make the following assumption:
given a query, an effective partial-dataset retrieval will re-
semble a full-dataset retrieval. The idea is that we want
a retrieval that merges content from a few collections to
be indistinguishable from one that merges content from all
collections. Because users scan results from top to bottom,
collections should be prioritized by their contribution of doc-
uments to the top ranks of a full-dataset retrieval. We train
a classification system that models the inclusion of a collec-
tion in the merged results as a function of a set of features.
Training data is harvested from full-dataset retrievals con-
ducted offline.

Modeling resource selection as a classification problem al-
lows us to easily incorporate a diverse set of evidence as
input features. This evidence can be classified into three
categories. Corpus-based features derive evidence from col-
lection documents. These include traditional resource se-
lection metrics such as ReDDE. Query-categorical features
derive evidence from the topic of the query. Finally, click-
through features derive evidence from queries with clicks on
collection documents. In a federated search environment,
click-through data can be collected by the portal interface.

A classification-based approach provides several advan-
tages over traditional approaches. First, it is flexible. De-
pending on the federated search environment, different fea-
tures can be easily incorporated into the model. Second, it
is easy to train. As long as the system has offline access to
full-dataset retrievals, more training data can be generated.
Third, it is general. Although we adopt a particular ma-
chine learning method in this paper, any multiclass learning
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method can be used to automatically tune parameters given
training data. Finally, it is effective. We demonstrate that in
the majority of experimental settings, a classification-based
approach significantly outperforms traditional resource se-
lection approaches.

2. RELATED WORK
Most resource selection methods share two things in com-

mon: they formulate the problem as resource ranking (i.e.,
prioritizing collections for selection) and derive evidence from
collection content (e.g., from sampled documents). Common
approaches view collections (or their sampled documents) as
large documents and adapt document retrieval methods to
rank collections. CORI adapts INQUERY’s inference net
document ranking approach [5]. Xu and Croft score collec-
tions by the Kullback-Leibler divergence between the query
and collection language models [26]. Si et al. score col-
lections based on the query generation probability given the
collection language model [23]. Large document models have
the advantage of being relatively straight-forward adapta-
tions of well studied document ranking techniques. However,
they model the relevance of the entire collection. For this
reason, they may favor a small, topically-focused collection
(related to the query) when a larger, more topically-diverse
collection contains more relevant documents. Instead of
comparing the text in the query with that of the entire col-
lection, Seo and Croft focus on the collection’s documents
most similar to the query [16]. More specifically, a collection
is scored based the geometric average query likelihood from
its top m documents.

Methods such as GlOSS [9] and ReDDE [21] rank col-
lections based on their expected number of relevant docu-
ments. Similar to a large document model, GlOSS mod-
els collection relevance using a query-independent collection
language model. ReDDE also scores collections by their ex-
pected number of relevant documents, but derives this ex-
pectation using a retrieval from a centralized sample index,
a mix of documents sampled from each target collection [21].
ReDDE predicts a binary relevance label for every sampled
document and then assumes that every relevant sampled
document represents some number of relevant documents in
the collection from where it originates.

Other resource selection algorithms estimate the distribu-
tion of document scores or document probabilities of rele-
vance across collections [22, 19, 24]. Given these estimates,
collections can be prioritized by their average document
score or by a collection’s contribution to an approximated
merged ranking. Similar to ReDDE, these methods start by
issuing the query to a centralized sample index, producing a
retrieval score for every sampled document. A full-collection
score distribution is estimated by assuming that every scored
sampled document represents some number of documents in
its original collection with a similar score.

Sometimes, collections are topically focused. Ipeirotis and
Gravano exploit a topical relatedness between collections in
order to minimize the negative effect of incomplete content
descriptions derived from sampled documents [10]. Collec-
tions are first classified into a topic hierarchy using topically-
focused queries and their hit counts. A collection’s language
model (derived from sampled documents) is smoothed with
those from topically-related ones. At test time, a “flat” re-
source selection method (e.g., GlOSS) is applied in a top-
down fashion, descending the topic/collection hierarchy.

We cast resource selection as a multiclass classification
problem. Therefore, we review some prior work on query
classification. Because queries are terse, query-classification
approaches often augment the query with features beyond
the query string, possibly derived from query-logs [2], query
click-through data [25], and documents associated with tar-
get categories [17, 13, 18]. Bietzel et al. classify queries into
semantic categories using an (unlabeled) query-log and a
technique known as selectional preference. The query “inter-
est rates” belongs to target category finance because terms
“interest” and “rates” often occur in contexts that co-occur
with known finance-related terms. Shen et al. [17] and other
participants of the KDD 2005 Cup [13] use corpus-based ev-
idence. The query is issued to an index where every doc-
ument is associated (heuristically) with a target category.
Then, similar to ReDDE, the query is classified based on
the number of top-ranked documents associated with each
category. In later work, Shen et al. derive a soft membership
of documents to target categories using term similarity [18],
after augmenting the category representation with related
terms using pseudo-relevance feedback. Li et al. take a
different approach [12]. Instead of enriching the query rep-
resentation, classifiers are trained using purely query string
features. However, the amount of training data is expanded
by propagating class labels to unlabeled queries using a large
click-graph.

In the context of web search, vertical selection refers to
the decision of whether to include content from specialized
collections in web search results. In previous work, Diaz pro-
poses a model for predicting whether to include news content
based on user click feedback [6]. Arguello et al. address the
situation where 18 verticals can be integrated into web re-
sults [1]. Finally, Diaz and Arguello propose several methods
for improving the performance of classification-based verti-
cal selectors by incorporating implicit user feedback [7].

3. PROBLEM DEFINITION
Given a set of n collections and a query q, a resource se-

lector picks k collections from which to retrieve documents.
We assume that the rankings from different collections can
be merged as though all documents were centrally indexed.
This separates the performance of the merging algorithm
from resource selection evaluation. When k = n, rankings
are equivalent to those generated from a centralized collec-
tion. We refer to this as a full-dataset retrieval. When
k < n, we expect performance to be inferior to a full-dataset
retrieval. Our objective, therefore, is to perform as well as
possible for a given value k.

4. CLASSIFICATION APPROACH
Our classification approach takes the form of n one-vs-all

logistic regression models (one per collection).1 Given a test
query, each classifier makes a binary prediction with respect
to its collection. Collections are then prioritized based on
Pi(Y = 1|q), the confidence of a positive prediction from
collection Ci’s classifier.

Training collection-specific classifiers requires training data
in the form of binary judgements on collections. IfQ denotes
the set of training queries and C the set of target collections,

1http://www.csie.ntu.edu.tw/cjlin/liblinear/

1278



we require a function of the form,

F : Q× C → {+1,−1},

which maps query-collection pairs to +1, if Ci is relevant to
q, and −1, if Ci is not relevant to q.

As mentioned in the introduction, our objective is to learn
a model that selects collections based on their contribution
to a full-dataset retrieval. This is based on the assumption
that, on average, a full-dataset retrieval (k = n) outperforms
a partial dataset retrieval (k < n). Given a full-dataset re-
trieval of query q, we generate a true label for every collec-
tion Ci ∈ C as follows. With respect to Ci, query q is a
positive instance, +1, if more than τ documents from Ci are
present in the top T full-dataset results. Otherwise, q is a
negative instance, −1, with respect to Ci.

We set T = 30 because we evaluate merged results in
terms of P@{5, 10, 30} and set τ = 3 in order to ignore col-
lections that contribute only a few documents to the top 30.
We do not claim this is an optimal parameter setting. One
alternative would have been to train different models using
T = {5, 10, 30} when evaluating based on P@{5, 10, 30}, re-
spectively.

5. SOURCES OF EVIDENCE
Our approach to resource selection is to exploit sources of

evidence known to be effective in previous work. In addi-
tion, we propose several other signals likely to be correlated
with a collection’s impact on a merged retrieval. We focus
on features derived from three sources of evidence: collec-
tion documents, the query topic, and collection query-click
behavior.

Some of the signals require conducting a retrieval from
a particular index, for example from a centralized sample
index, which combines documents sampled from each tar-
get collection. Unless stated otherwise, all retrievals were
conducted using Markov random field retrieval [14]. The
parameter settings of the algorithm were taken from prior
work and have been shown to perform well across various
collections and tasks [14].

5.1 Corpus Features
Corpus features derive evidence from collection documents.

For example, given a query, we might prioritize collections
by their number of documents retrieved. This, however,
would require searching every collection, which is impracti-
cal given our objective of approximating a full-dataset re-
trieval by searching only a few collections. For this reason,
corpus-features are derived from sampled documents. Doc-
uments were sampled from a collection uniformly without
replacement. In some federated search environments, col-
lection documents are only accessible through a search in-
terface. Prior work suggests that sampled sets of similar
quality (as those obtained using uniform sampling) can be
obtained using query-based sampling [4].

Corpus features correspond to three existing resource se-
lection methods: CORI [5], Seo and Croft’s geometric aver-
age approach [16] (GAVG), and the variant of ReDDE intro-
duced in Arguello et al. [1], which we refer to as ReDDE.top.
While these three methods derive evidence from the same
source (i.e., collection samples), they model different phe-
nomena. CORI and GAVG model the similarity between the
query and collection text. However, CORI models the col-
lection as one large query-independent bag of words, while

GAVG focuses on the collection documents most similar to
the query. ReDDE.top models the collection’s average doc-
ument score in a full-dataset retrieval. We incorporate these
three collection scoring functions as features to investigate
their relative contribution to resource selection performance.

5.1.1 CORI
CORI adapts INQUERY’s inference net document rank-

ing approach to ranking collections [5]. Here, all statistics
are derived from sampled documents rather than the full
collection. We use n CORI features (one per collection).

5.1.2 Geometric Average
Seo and Croft’s approach [16] issues the query to a cen-

tralized sample index, one that combines document samples
from every collection, and scores collection Ci by the ge-
ometric average query likelihood from its top m sampled
documents,

GAVGq(Ci) =

0B@ Y
d∈top m from C

sampled
i

P (q|d)

1CA
1
m

,

where Csampled
i is the set of documents sampled from Ci and

P (q|d) is document d’s query likelihood score. If fewer than
m sampled documents are retrieved for a given collection,
the product above is padded with Pmin(q|d), the retrieval’s
minimum query likelihood. We use n GAVG features (one
per collection).

5.1.3 ReDDE.top
Like GAVG, ReDDE.top issues to the query to a central-

ized sample index and scores collection Ci according to

ReDDE.topq(Ci) = SF i ×
X

d∈Rsampled
N

I(d ∈ Ci)× P (q|d),

where Rsampled
N denotes the top N documents in the cen-

tralized sample index retrieval and SF i is the scale factor
of collection Ci. The scale factor quantifies the difference be-
tween the size of the original collection, |Ci|, and the number

of documents sampled from it, |Csampled
i |,

SF i =
|Ci|

|Csampled
i |

. (1)

We used two sets of ReDDE.top features, one set using N =
100 and a second using N = 1, 000, for the following reason.
The first set accumulates scores from the top 100 sampled
documents. A collection with no documents in the top 100
receives a score of zero. This is problematic, however, if the
number of collections with a non-zero score is less than k, the
number of collections to be selected. To increase the number
of collections with a non-zero ReDDE.top feature, we used
a second set of ReDDE.top features setting N = 1, 000. We
use 2n ReDDE.top features: n features with N = 100 and
n features with N = 1, 000.

5.2 Query Category Features
If collections are topically-focused, a potentially useful

source of evidence is the topic of the query. We selected
166 topics from the Open Directory Project (ODP) hierar-
chy and crawled Web documents associated with these ODP
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nodes.2 These document sets were used to train logistic-
regression classifiers (one per category) using unigram fea-
tures.3 Because queries are terse, instead of applying our
trained classifiers directly on the query string, we apply them
to documents in the centralized sample index and classify
the query using a retrieval from this index. We set the value
of category feature yi according to,

CATq(yi) =
1

Z
X

d∈Rsampled
N

P (q|d)

 
P (yi|d)P

yj∈Y P (yj |d)

!
, (2)

where P (yi|q) is category yi’s confidence value on document
d and Z =

P
d∈Rsampled

N
P (q|d). For these features, we set

N = 100. We use 166 query category features (one per
category).

5.3 Click-through Features
Once in operation, a resource selection system has access

to user feedback in the form of clicks on collection docu-
ments. A click on a document can be viewed as a surrogate
for document relevance. We view a click on a document as
a surrogate for collection relevance, in favor of the collection
from which the document originates. Click-through features
exploit a possible correlation between collection relevance
and the similarity between the test query and queries with
clicks on collection documents.

Our approach is to model queries which result in a click
on a collection document. For a collection, Ci, let Qi denote
all queries associated with a click event on a document in
Ci (allowing duplicate queries). We index each Qi as an
individual document in a corpus of n documents. Given
a query, we use the retrieval score of each collection as a
feature. We use n click-through features (one per collection).

6. METHODS AND MATERIALS

6.1 Data
The TREC GOV2 test collection is a large crawl of the

“.gov”portion of the Web, containing about 25M documents.4

The GOV2 corpus was used to construct 3 experimental
federated search testbeds, varying the number of target col-
lections: 1,000, 250, and 30. We refer to these testbeds
as gov2.1000, gov2.250, and gov2.30, respectively. We con-
structed the gov2.1000 testbed following the procedure de-
scribed in Fallen and Newby [8]. While the GOV2 corpus
consists of about 17,000 unique hosts (e.g., www.epa.gov),
the largest 1,000 hosts contain about 90% of the GOV2 col-
lection (i.e., about 22M documents). The gov2.1000 testbed
was constructed by treated each of the largest 1,000 hosts
as a separate collection.

The gov2.250 and gov2.30 testbeds were constructed by
clustering hosts in the gov2.1000 testbed into 250 and 30
clusters, respectively, as follows. First, to represent hosts,
we randomly sampled 1,000 documents from each. We de-
fine a host’s vocabulary by all term-stems (using the Porter
stemmer [15]) appearing at least 10 times in its document
sample. Host-specific language models were constructed us-
ing maximum likelihood without smoothing. The distance

2http://www.dmoz.org
3http://www.csie.ntu.edu.tw/cjlin/liblinear/
4http://ir.dcs.gla.ac.uk/test collections/gov2-summary.htm

between hosts Hi and Hj was computed using the Jeffrey
divergence between their respective language models [11],
also known as the symmetric Kullback-Leibler divergence,

DJ(θi||θj) =
X
w

(P (w|θi)− P (w|θj)) log2

„
P (w|θi)

P (w|θj)

«
.

We used average-link agglomerative clustering, iteratively
merging clusters according to their hosts’ average pair-wise
similarity. We seeded the clustering by first combining hosts
belonging to the same government entity (e.g., nih, usgs,
usda, epa, uspto, nasa).

Figure 1 shows each testbed’s collection size distribution.
The gov2.1000 and gov2.250 testbeds have a few large col-
lections and many small collections, while gov2.30 has many
large collections and a few small ones. In the gov2.1000
testbed, 720 (72%) collections have fewer than 10,000 doc-
uments and 438 (44%) have fewer than 5,000 documents.
In the gov2.250 testbed, 131 (66%) collections have fewer
than 10,000 documents. In the gov2.30 testbed, 24 (80%)
collections have more than 1M documents.

As described in Section 4, we train a classification system
to predict the inclusion of a collection in the merged results
based on its impact on a full-dataset retrieval. To this end,
we require a set of queries used to produce full-dataset re-
trievals. There are multiple possibilities for selecting a set of
“training”queries (e.g., using a query-log or generating artifi-
cial queries from collection text). However, one requirement
is that there be enough positive instances for training for
every collection. In other words, for each collection, there
should be a sufficient number of queries with hits in the
collection.

In this work, training queries were sampled from the AOL
query-log. Recall that our three experimental testbeds con-
sist of clusters of hosts from the“.gov”domain (1, 000 single-
ton host clusters in the case of the gov2.1000 testbed). Click
events in the AOL query-log are uniquely identified by user
ID, query, date/time and host URL (i.e., for the host asso-
ciated with the document clicked). Therefore, it is possible
to identify all AOL click events associated with any one of
our 1, 000 hosts. For each host, we estimate a query multi-
nomial using the query’s relative frequency in click events
associated with documents from the host. A set of 75,000
queries was sampled (without replacement) using a two-step
iterative processes. First, a host is sampled uniformly from
the set of 1, 000 hosts. Then, a query is sampled from the
host’s query multinomial. Hosts were sampled uniformly
to favor coverage across hosts and, thereby, coverage across
collections in our three testbeds. Queries were sampled ac-
cording to their relative frequency in click events to favor
popular queries likely to have hits in the collection.

Click-through features require simulating click events on
collection documents. Click-through data collected over time
was simulating also using the AOL query-log. We collected a
total of 305, 236 click events associated with our 1,000 “.gov”
hosts. There were no click events for about 25% of hosts. Of
the 75% of hosts with click events, only about half had more
than 50 click events. Click events associated with a query
in our test set (described later) were omitted from the set
of queries used for training and from those used to simulate
click-through data.
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Figure 1: Collection size distribution of our three experimental testbeds.

6.2 Single-Evidence Baselines
The classification approach was evaluated against six single-

evidence baselines, including one for every type of feature
used in the classification approach. Corpus-based single-
evidence baselines CORI, GAVG, and ReDDE.top score col-
lections as described in Sections 5.1.1-5.1.3. ReDDE.top was
used as a single-evidence baseline as follows. First collec-
tions are prioritized by ReDDE.top score using N = 100. A
second priority list is constructed using N = 1, 000. If the
first priority list has fewer than k collections, the remaining
collections are selected from the second priority list.

We also evaluated a baseline approach that scores col-
lections by query likelihood given its click-through queries,
denoted by CLICK, as described in Section 5.3.

6.2.1 ReDDE
In addition to ReDDE.top, we evaluate against the orig-

inal version of ReDDE [21], which estimates the number of
relevant documents in a collection. ReDDE, like GAVG and
ReDDE.top, conducts a retrieval from a centralized sample
index and then scores collection Ci according to,

ReDDEq(Ci) = SF i ×
X

d∈C
sampled
i

P (rel|d),

where P (rel|d) is the probability that document d is rele-
vant and SF i is the scale factor of collection Ci, defined by
Equation 1.

ReDDE models P (rel|d) as a step function, based on doc-
ument d’s projected rank in an unobserved full-dataset re-
trieval, R̂full(d), according to,

P (rel|d) =

(
1 if R̂full(d) <

`
τ × |Call|

´
0 otherwise,

where |Call| =
P

Cj∈C |Cj | and τ is a parameter. Document

d’s projected rank in the unobserved full-dataset ranking,
R̂full(d), is the sum of scale factors for collections represented
by documents ranked above d in the centralized sample in-
dex retrieval, Rsampled,

R̂full(d) =

nX
i=1

0@Rsampled(d)−1X
j=1

I(dj ∈ Ci)× SF i

1A ,

where Rsampled(d) is document d’s rank in the centralized
sample index retrieval. Our baseline ReDDE algorithm cor-
responds to the version referred to as modified ReDDE in [21].
Modified ReDDE ranks collections using ReDDE with τ =
0.0005. A second priority list is constructed for all collec-
tions with a ReDDE mass of less than 0.10 using τ = 0.003.
If the first priority list has less than k collections, the remain-
ing collections are selected from the second priority list.

6.2.2 Category-based Similarity
Our CATS baseline scores collections based on the simi-

larity between the topical profile of the query and the top-
ical profile of the collection. The query’s topical profile is
given by normalizing Equation 2 across categories, such thatP

yj∈Y CATSq(yj) = 1. The collection’s topical profile is de-

fined by,

P (yj |Ci) =
1

|Csampled
i |

X
d∈C

sampled
i

P (yj |d)P
yk∈Y

P (yk|d)
.

The similarity between the query and collection topical pro-
files is given by the Bhattacharya distance between these
two distributions [3],

B(q, Ci) =
X

yk∈Y

p
P (yk|q)× P (yk|Ci).

6.3 Evaluation
We are interested in the quality of document rankings

produced by selecting only a few collections and combining
their documents into a single ranked list. For this reason,
we evaluate in terms of precision at different cut-off points,
P@{5, 10, 30}, when selecting between 1-5 collections. To
focus evaluation on resource selection rather than results
merging, we assume access to a function that provides the
score that a centralized retrieval would have provided for ev-
ery document retrieved. Given a set of collections selected,
we combine their documents into a single ranked list accord-
ing to each document’s centralized retrieval score.

We evaluate on TREC queries 701-850, used in the ad-hoc
retrieval task of the Terabyte Track from 2004, 2005, and
2006. Recall that we are missing about 10% of the GOV2
collection in our testbeds, corresponding to those documents
in GOV2 not originating from the 1,000 largest hosts. How-
ever, all queries had at least one relevant document in our
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subset of GOV2, except query 703, which has no relevant
documents in the full GOV2 collection.

All approaches were evaluated on all three testbeds un-
der two conditions: sampling 1,000 documents and sam-
pling 300 documents from each collection. We denote these
6 experimental conditions as gov2.1000.1000, gov2.1000.300,
gov2.250.1000, gov2.250.300, gov2.30.1000, and gov2.30.300.
Our motivation is to investigate the effect of sampled set size
on resource selection performance across the classification
approach and single-evidence baselines.

7. EXPERIMENTAL RESULTS
We evaluate resource selection based on the quality of the

merged retrieval when selecting between 1-5 collections. Re-
sults are presented based on P@{5, 10, 30}. Table 1 shows
results across our three testbeds when sampling 1,000 doc-
uments from each collection. Table 2 shows results when
sampling 300 documents from each collection. In addition,
to evaluate the overall performance of federated search, we
present results from centralized retrieval (denoted as “full”),
from a single index of all n collections combined.

The classification-based approach either significantly out-
performs or is statistically indistinguishable from the best
single-evidence baseline in all cases. In the gov2.1000.1000
condition, the GAVG and ReDDE.top baselines perform at
the same level as the classification approach. We investigate
how this experimental condition favors these methods in the
next section.

From the performance of our single-evidence baselines, we
notice two trends. First, all baselines that derive evidence
from sampled documents (i.e., CORI, GAVG, ReDDE.top,
and ReDDE) perform better when sampling 1, 000 vs. 300
documents from each collection. This shows that these meth-
ods are sensitive to the sampled set size. They perform bet-
ter with more evidence, which is consistent with previous
evaluations [20]. Second, their relative performance varies
across experimental conditions. In the gov2.1000.1000 con-
dition, GAVG and ReDDE.top clearly outperform CATS
and CLICK in all cases. This is not true in the gov2.30.300
condition. When k = 1, in the gov2.30.300 condition, CATS
and CLICK both outperform GAVG and ReDDE.top. These
approaches derive evidence from different sources. GAVG
and ReDDE.top derive evidence exclusively from sampled
documents. CATS derives evidence from the topical simi-
larity between the query and the collection. CLICK derives
evidence from click-through data. Different types of evi-
dence was particularly useful under different conditions.

Two results support the hypothesis that full-dataset re-
trievals can be used to harvest data for training a machine
learned resource selection method. First, a full-dataset re-
trieval outperforms all methods, including the classification
approach, in all cases. Second, the classification approach,
trained on data harvested from full-dataset retrievals, per-
forms at same level or better than the best single-evidence
baseline in all cases.

Finally, the fact that a full-dataset retrieval outperforms
all methods in all cases indicates that there is room for im-
provement. We may more closely approximate the perfor-
mance of a full-dataset retrieval by integrating new sources
of evidence into the classification approach. The perfor-
mance gap between full-dataset and federated retrieval is
larger than that observed in some prior work. This may
be a product of our three testbeds. Standard testbeds fre-

quently used in prior work contain about 100 collections,
with no collection containing more than 1M documents.

7.1 Representation Quality
ReDDE.top and GAVG, which derive evidence from sam-

pled documents, perform well in the gov2.1000.1000 exper-
imental condition. In this condition, 1,000 documents were
sampled from every collection. As previously mentioned,
72% of collections in the gov2.1000 testbed have fewer than
10,000 documents and 44% have fewer than 5,000 docu-
ments. This means that a sample set of 1,000 documents
constitutes at least 20% of the full collection for about half
the collections in gov2.1000. In other words, in this condi-
tion, ReDDE.top and GAVG have access to fairly complete
representations for about half the collections. Furthermore,
we would expect these methods to do well if these smaller
collections frequently contain relevant documents. To exam-
ine this, we binned collections by their number of documents
and determined, for each bin, the number of times a collec-
tion from the bin contained at least 10 documents relevant
to a test query. These histograms are shown in Figure 2. In
the gov2.1000 testbed, the smallest collections, with 1,000-
10,000 documents, most often contain at least 10 documents
relevant to a test query. In contrast, in the gov2.250 and
gov2.30 testbeds, the collections that most often contain
at least 10 documents relevant to a test query have more
than 100,000 documents. Therefore, we can conclude that in
the gov2.1000.1000 condition, corpus-based single-evidence
baselines such as ReDDE.top and GAVG benefit from hav-
ing fairly complete representations (i.e. large sampled sets
relative to the collection size) for collections containing many
relevant documents. In the other conditions, we see a more
clear benefit from integrating multiple sources of evidence.

7.2 Feature Ablation Studies
The classification approach integrates different types of

evidence as input features. In this section, we conduct a
set of feature ablation studies to test the contribution of
evidence integration to the classification approach’s perfor-
mance. We focus on experimental condition gov2.1000.1000
and gov2.30.300. Our motivation is to verify that the classi-
fication approach is capable of focusing on the most reliable
features under different experimental conditions. Based on
the analysis from Section 7.1, in the gov2.1000.1000 condi-
tion, we expect the classification approach to focus on evi-
dence derived from sampled documents (i.e., CORI, GAVG,
and ReDDE.top features). In the gov2.30.300 condition, we
expect it to focus on other types of evidence. We individu-
ally omitted each feature type (CORI, GAVG, ReDDE.top,
CATS, and CLICK) and measure its contribution to per-
formance based on the classifier’s percent decrease in pre-
cision. Significance, again, is tested using a paired t-test
on queries. Results are presented in Table 3. These results
confirm our hypothesis. In the gov2.1000.1000 condition, in
the majority of cases, omitting ReDDE.top features leads
to a significant drop in performance. This is because in the
gov2.1000.1000 condition, ReDDE.top has access to fairly
complete representations for those collections with relevant
content. On the other hand, in the gov2.30.300 condition,
CLICK features are more predictive, particularly in terms of
P@30. This shows that the classification approach is capable
on focusing on the most reliable features depending on the
condition. Also, although CORI, GAVG, and ReDDE.top
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features derive evidence from the same source (i.e., sampled
documents), they model different phenomena. Our results
show that they do not contribute equally to performance.
This further motivates a feature integration approach, even
when the evidence is derived from the same source.

8. CONCLUSION
We evaluated a classification approach to resource selec-

tion against a number of single-evidence baselines, includ-
ing three existing resource selection methods that have pro-
duced good results in previous evaluations. Evaluation was
done across six experimental conditions, varying the number
of target collections and the number of documents sampled
from each. The classification approach performed either at
the same level or significantly better than all single-evidence
baselines in all cases.

Most existing approaches to resource selection derive evi-
dence from collection content. Often, the content in the col-
lection is represented using sampled documents. Our eval-
uation shows that these methods perform better when they
have access to fairly complete representations. Their per-
formance deteriorates, however, when most collections are
large and sample sets are small. Our classification-based
approach combines these approaches as input features along
with features that capitalize on the query-collection topic
similarity and click-through information. The end result is
a method that is more robust. We show that when collection
representation quality is poor, the classifier learns to focus
on more reliable sources of evidence from training data.

We also show that full-dataset retrievals, which merge con-
tent from every collection, can be used to produce data to
train a machine learned approach. More training examples
can be produced as long as there is (offline) access to full-
dataset retrievals. This training procedure may be partic-
ularly valuable in a dynamic environment where collection
content is continually updated. A new model can be easily
trained using a new set of full-dataset retrievals.

In this work, in order to separate results merging per-
formance from resource selection evaluation, full-dataset re-
trievals were produced by issuing queries to a centralized
index of all collection content. In some federated search en-
vironments, it may not be possible to combine collections
in a single index. Future research may consider generat-
ing training data using a merging algorithm that does not
assume access to a single index of all collection content.
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gov2.1000.1000
P@5

k full cori gavg redde.top redde cats click classification
1 0.569 0.224 0.405 0.360 0.166 0.192 0.183 0.392 (-3.31%)
2 0.569 0.315 0.446 0.447 0.275 0.256 0.239 0.436 (-2.40%)
3 0.569 0.372 0.479 0.489 0.336 0.302 0.277 0.482 (-1.37%)
4 0.569 0.405 0.483 0.506 0.380 0.321 0.322 0.506 (0.00%)
5 0.569 0.417 0.495 0.529 0.395 0.336 0.337 0.510 (-3.55%)

P@10
k full cori gavg redde.top redde cats click classification
1 0.534 0.188 0.331 0.321 0.150 0.152 0.147 0.355 (7.30%)
2 0.534 0.264 0.390 0.394 0.248 0.215 0.194 0.399 (1.19%)
3 0.534 0.323 0.423 0.436 0.302 0.261 0.228 0.446 (2.47%)
4 0.534 0.359 0.438 0.457 0.344 0.285 0.270 0.458 (0.15%)
5 0.534 0.380 0.442 0.484 0.364 0.302 0.281 0.468 (-3.33%)

P@30
k full cori gavg redde.top redde cats click classification
1 0.452 0.113 0.201 0.206 0.102 0.095 0.091 0.224 (8.68%)
2 0.452 0.167 0.266 0.268 0.168 0.139 0.124 0.281 (4.59%)
3 0.452 0.217 0.305 0.312 0.206 0.170 0.152 0.319 (2.51%)
4 0.452 0.247 0.319 0.337 0.248 0.194 0.185 0.339 (0.53%)
5 0.452 0.266 0.325 0.362 0.275 0.205 0.195 0.352 (-2.60%)

gov2.250.1000
P@5

k full cori gavg redde.top redde cats click classification
1 0.569 0.137 0.294 0.326 0.238 0.174 0.220 0.419 (28.40%)‡
2 0.569 0.228 0.328 0.408 0.360 0.242 0.303 0.494 (21.05%)‡
3 0.569 0.291 0.360 0.432 0.417 0.272 0.340 0.497 (14.91%)‡
4 0.569 0.323 0.374 0.475 0.483 0.313 0.364 0.505 (4.44%)
5 0.569 0.357 0.389 0.489 0.503 0.345 0.388 0.515 (2.40%)

P@10
k full cori gavg redde.top redde cats click classification
1 0.534 0.105 0.248 0.283 0.209 0.142 0.188 0.371 (31.35%)‡
2 0.534 0.186 0.293 0.363 0.311 0.201 0.262 0.452 (24.40%)‡
3 0.534 0.248 0.330 0.394 0.372 0.229 0.291 0.460 (16.70%)‡
4 0.534 0.282 0.338 0.432 0.430 0.266 0.308 0.477 (10.58%)‡
5 0.534 0.293 0.350 0.438 0.457 0.297 0.334 0.487 (6.46%)†

P@30
k full cori gavg redde.top redde cats click classification
1 0.452 0.068 0.158 0.197 0.143 0.090 0.130 0.265 (34.13%)‡
2 0.452 0.124 0.196 0.272 0.230 0.132 0.182 0.343 (26.19%)‡
3 0.452 0.168 0.233 0.309 0.283 0.151 0.213 0.359 (16.05%)‡
4 0.452 0.204 0.245 0.337 0.331 0.187 0.227 0.372 (10.22%)‡
5 0.452 0.226 0.262 0.344 0.353 0.208 0.246 0.382 (8.38%)‡

gov2.30.1000
P@5

k full cori gavg redde.top redde cats click classification
1 0.569 0.281 0.302 0.322 0.295 0.323 0.298 0.370 (14.52%)
2 0.569 0.380 0.403 0.419 0.428 0.384 0.374 0.447 (4.39%)
3 0.569 0.434 0.446 0.456 0.447 0.427 0.421 0.487 (6.76%)
4 0.569 0.462 0.468 0.487 0.472 0.451 0.454 0.499 (2.48%)
5 0.569 0.474 0.472 0.503 0.491 0.482 0.460 0.507 (0.80%)

P@10
k full cori gavg redde.top redde cats click classification
1 0.534 0.246 0.264 0.269 0.246 0.280 0.255 0.318 (13.67%)
2 0.534 0.332 0.348 0.361 0.368 0.340 0.335 0.393 (6.56%)
3 0.534 0.391 0.387 0.403 0.392 0.384 0.374 0.438 (8.49%)†
4 0.534 0.426 0.415 0.442 0.415 0.407 0.413 0.461 (4.41%)
5 0.534 0.445 0.429 0.462 0.444 0.433 0.423 0.471 (2.03%)

P@30
k full cori gavg redde.top redde cats click classification
1 0.452 0.181 0.188 0.185 0.167 0.195 0.176 0.220 (12.87%)
2 0.452 0.253 0.262 0.261 0.269 0.267 0.241 0.304 (13.32%)†
3 0.452 0.309 0.294 0.304 0.304 0.302 0.280 0.346 (11.71%)†
4 0.452 0.339 0.326 0.337 0.328 0.313 0.309 0.361 (6.47%)
5 0.452 0.353 0.341 0.358 0.345 0.334 0.320 0.377 (5.25%)

Table 1: Results for experimental conditions gov2.1000.1000, gov2.250.1000, and gov2.30.1000. Percent
improvement is with respect to the best single-evidence baseline. Statistical significance is with respect to
all single-evidence baselines. Significance, using a paired t-test on queries, is denoted with a † at the p < 0.05
level and a ‡ at the p < 0.005 level.
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gov2.1000.300
P@5

k full cori gavg redde.top redde cats click classification
1 0.569 0.209 0.323 0.303 0.125 0.200 0.183 0.383 (18.26%)
2 0.569 0.306 0.358 0.407 0.221 0.263 0.239 0.427 (4.95%)
3 0.569 0.340 0.399 0.450 0.283 0.301 0.277 0.463 (2.99%)
4 0.569 0.370 0.427 0.466 0.313 0.313 0.322 0.482 (3.46%)
5 0.569 0.381 0.440 0.478 0.350 0.333 0.337 0.490 (2.53%)

P@10
k full cori gavg redde.top redde cats click classification
1 0.534 0.174 0.277 0.270 0.110 0.166 0.147 0.332 (19.90%)†
2 0.534 0.260 0.317 0.358 0.191 0.224 0.194 0.392 (9.57%)
3 0.534 0.293 0.361 0.399 0.253 0.269 0.228 0.432 (8.07%)
4 0.534 0.321 0.381 0.419 0.283 0.276 0.270 0.444 (5.93%)
5 0.534 0.339 0.399 0.433 0.321 0.297 0.281 0.456 (5.27%)

P@10
k full cori gavg redde.top redde cats click classification
1 0.452 0.097 0.174 0.171 0.074 0.101 0.091 0.218 (25.65%)†
2 0.452 0.162 0.216 0.245 0.126 0.141 0.124 0.270 (10.52%)
3 0.452 0.191 0.249 0.284 0.172 0.176 0.152 0.304 (7.10%)
4 0.452 0.211 0.267 0.304 0.197 0.185 0.185 0.324 (6.47%)
5 0.452 0.230 0.284 0.321 0.224 0.208 0.195 0.341 (6.05%)

gov2.250.300
P@5

k full cori gavg redde.top redde cats click classification
1 0.569 0.125 0.212 0.274 0.228 0.111 0.220 0.391 (42.65%)‡
2 0.569 0.184 0.267 0.353 0.333 0.176 0.303 0.472 (33.84%)‡
3 0.569 0.246 0.286 0.407 0.391 0.232 0.340 0.494 (21.45%)‡
4 0.569 0.267 0.306 0.434 0.428 0.268 0.364 0.498 (14.86%)‡
5 0.569 0.290 0.319 0.462 0.447 0.279 0.388 0.518 (12.21%)‡

P@10
k full cori gavg redde.top redde cats click classification
1 0.534 0.096 0.178 0.228 0.186 0.089 0.188 0.342 (49.71%)‡
2 0.534 0.161 0.234 0.304 0.270 0.156 0.262 0.427 (40.40%)‡
3 0.534 0.218 0.249 0.366 0.350 0.195 0.291 0.450 (22.94%)‡
4 0.534 0.236 0.273 0.399 0.387 0.218 0.308 0.456 (14.31%)‡
5 0.534 0.258 0.283 0.417 0.409 0.233 0.334 0.476 (13.99%)‡

P@30
k full cori gavg redde.top redde cats click classification
1 0.452 0.057 0.115 0.148 0.133 0.055 0.130 0.241 (62.60%)‡
2 0.452 0.109 0.161 0.209 0.190 0.107 0.182 0.315 (51.13%)‡
3 0.452 0.149 0.182 0.253 0.251 0.138 0.213 0.333 (31.42%)‡
4 0.452 0.173 0.200 0.292 0.277 0.154 0.227 0.350 (19.77%)‡
5 0.452 0.187 0.210 0.314 0.302 0.166 0.246 0.362 (15.34%)‡

gov2.30.300
P@5

k full cori gavg redde.top redde cats click classification
1 0.569 0.224 0.266 0.251 0.231 0.282 0.298 0.374 (25.68%)‡
2 0.569 0.317 0.322 0.350 0.342 0.353 0.374 0.450 (20.07%)‡
3 0.569 0.409 0.376 0.391 0.400 0.412 0.421 0.493 (16.88%)‡
4 0.569 0.446 0.424 0.403 0.413 0.444 0.454 0.487 (7.40%)
5 0.569 0.467 0.436 0.443 0.442 0.464 0.460 0.509 (8.91%)

P@10
k full cori gavg redde.top redde cats click classification
1 0.534 0.194 0.222 0.206 0.178 0.238 0.255 0.321 (25.79%)‡
2 0.534 0.287 0.271 0.313 0.292 0.299 0.335 0.402 (20.04%)‡
3 0.534 0.361 0.327 0.353 0.338 0.352 0.374 0.442 (18.13%)‡
4 0.534 0.403 0.363 0.370 0.376 0.394 0.413 0.457 (10.55%)†
5 0.534 0.432 0.385 0.413 0.401 0.428 0.423 0.479 (10.71%)†

P@30
k full cori gavg redde.top redde cats click classification
1 0.452 0.128 0.153 0.143 0.118 0.153 0.176 0.223 (26.75%)‡
2 0.452 0.206 0.198 0.227 0.200 0.218 0.241 0.312 (29.38%)‡
3 0.452 0.263 0.243 0.265 0.246 0.271 0.280 0.347 (24.06%)‡
4 0.452 0.308 0.282 0.291 0.282 0.300 0.309 0.367 (18.51%)‡
5 0.452 0.336 0.295 0.334 0.317 0.322 0.320 0.390 (15.97%)‡

Table 2: Results for experimental conditions gov2.1000.300, gov2.250.300, and gov2.30.300. Percent im-
provement is with respect to the best single-evidence baseline. Statistical significance is with respect to all
single-evidence baselines. Significance, using a paired t-test on queries, is denoted with a † at the p < 0.05
level and a ‡ at the p < 0.005 level.
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Figure 2: Number of instances in which a collection of a given size (bin) contributes at least 10 relevant
documents to a test query.

gov2.1000.1000
P@10

k all.features no.cori no.gavg no.redde.top no.cats no.click
1 0.355 0.355 (0.00%) 0.357 (0.57%) 0.331 (-6.81%) 0.355 (0.00%) 0.354 (0.19%)
2 0.399 0.399 (0.00%) 0.393 (-1.52%) 0.383 (-4.04%) 0.385 (-3.37%) 0.401 (-0.51%)
3 0.446 0.446 (-0.15%) 0.436 (-2.26%) 0.401 (-10.23%) ‡ 0.436 (-2.41%) 0.438 (-1.95%)
4 0.458 0.456 (-0.29%) 0.442 (-3.52%) † 0.425 (-7.18%) † 0.450 (-1.76%) 0.449 (-1.91%)
5 0.468 0.467 (-0.14%) 0.454 (-3.01%) † 0.431 (-7.89%) † 0.466 (-0.43%) 0.456 (-2.58%)

P@30
k all.features no.cori no.gavg no.redde.top no.cats no.click
1 0.224 0.224 (0.00%) 0.227 (1.40%) 0.213 (-5.19%) 0.229 (2.20%) 0.225 (-0.20%)
2 0.281 0.281 (0.16%) 0.274 (-2.39%) 0.266 (-5.02%) 0.271 (-3.51%) 0.277 (-1.44%)
3 0.319 0.317 (-0.77%) 0.311 (-2.59%) 0.292 (-8.61%) † 0.312 (-2.24%) 0.313 (-2.10%)
4 0.339 0.338 (-0.20%) 0.330 (-2.70%) 0.319 (-5.80%) † 0.331 (-2.38%) 0.336 (-0.79%)
5 0.352 0.350 (-0.51%) 0.344 (-2.35%) 0.331 (-5.97%) † 0.347 (-1.52%) 0.344 (-2.35%) †

gov2.30.300
P@10

k all.features no.cori no.gavg no.redde.top no.cats no.click
1 0.321 0.321 (0.21%) 0.319 (-0.63%) 0.305 (-4.81%) 0.324 (1.05%) 0.279 (-13.18%)
2 0.402 0.394 (-2.00%) 0.390 (-3.01%) 0.392 (-2.50%) 0.388 (-3.51%) 0.379 (-5.84%)
3 0.442 0.438 (-0.91%) 0.428 (-3.04%) 0.423 (-4.26%) 0.431 (-2.43%) 0.435 (-1.52%)
4 0.457 0.449 (-1.76%) 0.455 (-0.44%) 0.469 (2.64%) 0.450 (-1.62%) 0.456 (-0.29%)
5 0.479 0.477 (-0.42%) 0.472 (-1.40%) 0.474 (-0.84%) 0.480 (0.28%) 0.465 (-2.81%)

P@30
k all.features no.cori no.gavg no.redde.top no.cats no.click
1 0.223 0.224 (0.70%) 0.219 (-1.41%) 0.206 (-7.34%) 0.228 (2.41%) 0.191 (-14.37%)
2 0.312 0.309 (-1.22%) 0.300 (-4.08%) † 0.301 (-3.51%) 0.295 (-5.52%) 0.283 (-9.46%) †
3 0.347 0.338 (-2.51%) 0.333 (-3.99%) 0.335 (-3.54%) 0.330 (-4.90%) † 0.319 (-8.12%) †
4 0.367 0.356 (-2.93%) 0.364 (-0.79%) 0.370 (0.98%) 0.349 (-4.70%) 0.349 (-4.82%)
5 0.390 0.380 (-2.52%) 0.387 (-0.63%) 0.383 (-1.72%) 0.381 (-2.29%) 0.372 (-4.65%)

Table 3: Feature type ablation study. A significant drop in performance, using a paired t-test on queries, is
denoted with a † at the p < 0.05 level and a ‡ at the p < 0.005 level.
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