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Search result examination is an important part of searching. High page load latency for landing pages
(clicked search results) can reduce the efficiency of the search process. Proactively prefetching landing pages
in advance of clickthrough can save searchers valuable time. However, prefetching consumes resources (pri-
marily bandwidth and battery) that are wasted unless the prefetched results are requested by searchers.
Balancing the costs in prefetching particular results against the benefits in reduced latency to searchers
represents the search result prefetching challenge. In this article, we introduce this challenge and present
methods to address it in both desktop and mobile settings. Our methods leverage searchers’ cursor move-
ments (on desktop) and viewport-based viewing behavior (on mobile) on search engine result pages (SERPSs)
in real time to dynamically estimate the result that searchers will request next. We demonstrate through
large-scale log analysis that our approach significantly outperforms three strong baselines that prefetch
results based on (i) the search engine result ranking (prefetch top-ranked results), (ii) past SERP clicks from
all searchers for the query (prefetch popular results), or (iii) past SERP clicks from the current searcher
for the query (prefetch results that the searcher prefers). Our promising findings have implications for the
design of search support in desktop and mobile settings that makes the search process more efficient.
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1. INTRODUCTION

Search result selection is a core part of the Web search experience. Following the gener-
ation of a search engine result page (SERP) comprised of candidate results, searchers
must select results of interest (so-called landing pages) and wait for them to load.
While the latency in SERP generation has been well studied and shown to impact mea-
sures of the search experience (e.g., higher SERP generation latency leads to higher
dissatisfaction and reduced SERP engagement) [Arapakis et al. 2014; Schurman and
Brutlag 2009], the relationship between latency and the loading of landing pages is
less well understood, even though waiting for landing pages to load can add delays
to the search process. As shown in previous research on latencies in interactions with
computer systems [Shneiderman 1984] and interactions with Web pages [Nielsen 1999]
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Fig. 1. Example of cursor-based prefetching. The model estimate of whether the searcher will select one
of the top three results over time (at 50ms, 100ms, 150ms) is shown alongside each link (as Score). These
estimates change as a function of the searcher’s cursor movements on the SERP. The cursor trail and the
trajectory towards the second result are highlighted in the figure with solid and dashed lines, respectively.
When the model score for a result reaches a pre-defined threshold (0.8 for Search Result 2), that result is
prefetched in anticipation of future selection by the searcher.

and, most recently, with search result pages [Crescenzi et al. 2016] in particular, such
latency has a significant negative impact on the overall user experience. Methods to
proactively fetch the content of particular search results before they are selected could
benefit searchers in terms of time saved, while balancing the costs involved in mis-
takenly downloading content that is never viewed; we define this as the search result
prefetching challenge.

To address the search result prefetching challenge, the prefetching system needs to
predict which result the searcher will select next. In previous research, such predictions
are usually made via static estimates learned from historic usage data at the population
or individual level [Fagni et al. 2006; Fan et al. 1999; Jonassen et al. 2012; Lempel and
Moran 2003; Yang et al. 2001]. For example, search engines prefetch the top result
for queries where there is little variation in intent (primarily navigational queries
[Agichtein and Zheng 2006]). However, these methods are only applied for small sets
of queries where the dominant intent is clearly defined and observable via prior click
patterns. Recent research on prefetching for video browsing has shown that effective
dynamic models can be learned from a combination of mouse cursor and eye-gaze
interactions [Lee et al. 2015]. The reliance on gaze data in particular raises doubts
about the scalability of those methods. In contrast, we present scalable methods based
solely on cursor data (on desktop) or viewport data (on mobile) to dynamically update
the estimates of likelihood of each result being selected during interaction with a
SERP; when the system is confident that a link will be selected, the page is prefetched
in anticipation of selection by the searcher.

On desktop, as illustrated in Figure 1, our method leverages the mouse cursor move-
ments on the SERP (which can now be collected in a scalable manner [Buscher et al.
2012; Huang et al. 2011]), contextualized by the query, the results, and the searcher’s
historic activity to make real-time predictions. If we can correctly prefetch early
enough, then we can save people significant time—this is especially important for those

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 23, Publication date: May 2017.



Search Result Prefetching on Desktop and Mobile 23:3

Time since result page load

— Os 5s 10s
% Page load % Scroll down % Scroll up
¢ B ¢ B 2 9
S ® ] 3 ®
3 o :ffitang Ioca| ||rnag UG; A 3 a :.:filr:\)mgk).ca' lmag
0.4 No 0.2 No 0.5No
L !.u.n.lfplefetching EA
0.3 No 05No|
:« Ic i 3. the i Lnk plefetr_hrg £
0.2No |——— 0.4 No |- 0.3 No
prefetching u : prefetching u
Prefetching
0.1 No 0.1No |! = iy 0.0 No
ﬁre etc |ng E
0.1 No 0.1 No 0.1 No

Fig. 2. Example of viewport-based prefetching for mobile search. The viewport position is in the schematic
is reported at 5s intervals over the first 10s after the SERP loads. The searcher scrolls down after 5s and
scrolls back up after 10s. A prefetching score is computed for each of the results at each time interval. When
that prefetching score reaches a threshold (z), set to 0.8 in this case), the second result is prefetched.

accessing the Web on low-bandwidth connections, who may need to be more selective
about the results that they view.

Research in mobile prefetching seeks to balance the utility of the prefetched content
against wasted bandwidth and battery, both of which are more pertinent in mobile
settings than on the desktop [Higgins et al. 2013; Mohan et al. 2013; Wang et al.
2015a]. On mobile, instead of relying on cursor movements (which are unavailable
given the focus on touch-based interactions), we present viewport-based prefetching as
a way to estimate searcher attention on mobile SERPs and learn models to prefetch
clicked landing pages. Just as searchers need to hover with their cursor in a desktop
setting prior to clicking on a result, the result needs to be visible in the viewport to
be selected. Since the viewport on mobile settings can be small, it offers a focused
view on the SERP and can provide a good indication of searcher attention. Prior work
has shown that viewport duration and eye-gaze duration are highly correlated [Lagun
et al. 2014]. Figure 2 presents an example of viewport-based prefetching in operation.
As the searcher scrolls to examine the SERP, the result captions that are visible in
the viewport change (including some that are re-examined during the impression as
the viewport moves up and down the SERP), and the model updates its estimates of
which results will be selected. When the model score for a particular result reaches a
given threshold (determined a priori based on desired performance characteristics, for
example, in terms of precision and recall), the landing page is prefetched.

We make the following contributions with our research:

—Introduce the search result prefetching challenge and estimate the scope of its po-
tential impact on searchers and their search experience (in terms of the fraction of
query volume and average time savings per query from our method);

—Develop machine-learned models that leverage a rich array of features to prefetch
search results pre-click;
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—Propose novel prefetching methodologies that span desktop and mobile settings, and
leverage mouse cursor and viewport signals, to prefetch search results;

—Experiment with large-scale logs and demonstrate gains over strong baselines, in-
cluding variations for different query types. We also identify the important feature
classes in the learned models via ablation experiments; and

—Present implications of search result prefetching for search system design and for
society generally (e.g., enabling more rapid information access for those on slower
Internet connections).

The remainder of this article is structured as follows. Section 2 describes related work
in areas such as prefetching, the impact of response latency on searcher engagement,
and monitoring interaction behavior, especially with SERPs. Section 3 motivates our
research by demonstrating the potential impact of prefetching in a search context. Sec-
tion 4 presents a formal description of the search result prefetching challenge. Section
5 describes the prefetching approach, including the data used, the features generated,
and the models that result. Section 6 presents the data used in training and testing
our prefetching models, and characteristics of that data are provided in Section 7. In
Section 8, we describe our experimental setup, including datasets and evaluation. In
Section 9, we present the results of our experiments, demonstrating the effectiveness
of our method compared to three strong baselines. Section 10 discusses our findings,
their limitations given the data and the problem setting, and their implications for
the design of search systems. We conclude in Section 11 and present opportunities for
future work.

2. RELATED WORK

A number of research areas are relevant to the work presented in this article: (i) the
impact of latency on interactions with computers and search engines, (ii) methods
to reduce latency via prefetching content, and (iii) methods for mining and modeling
search interactions. We describe related work in each of these areas in turn before
focusing on the contribution and benefit of our research over previous work.

2.1. Latency Effects

In the human-computer interaction community, there has been a significant amount
of research on the impact of system response times on the quality of search interac-
tions [Nielsen 1999]. Rapid responses to user instructions (i.e., less than a second)
are preferred over delayed action and can increase user productivity [Miller 1968;
Shneiderman 1984; Nielsen 1993]. Shneiderman [1984] reviewed the literature on com-
puter response time and recommended that computers should respond immediately,
in part based on limitations in human short-term memory [Miller 1968]. In online
settings, latencies in responding to a hyperlink selection are based on factors such as
Web browser performance, Internet connection speed, and the nature of the content
requested (e.g., plain text versus rich media). Web download speeds are an important
aspect of the user experience [Nielsen 1999]. A number of studies have considered
tolerable Web page load times (PLT's) [Cohen and Kaplan 2000; Nah 2004], including
the psychological impact of varying PLT [Ramsay et al. 1998].

Search engines have made significant infrastructure investments to reduce their re-
sponse times [Dean and Barroso 2013]. Studies have shown that even small increases
in latency (e.g., increasing the load time of the SERP by as little as 100ms) can lead
to lower searcher engagement that persists over time, even once the latency has been
reduced [Schurman and Brutlag 2009]. For example, Google conducted online experi-
ments where they intentionally injected server-side delays, ranging from 100 to 400ms,
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into the search results to observe the impact on people’s behavior. They found that
increasing the load time of the SERP by as little as 100ms decreased the number of
searches per person. These differences increased over time and persisted even after
the experiment ended [Schurman and Brutlag 2009]. Arapakis et al. [2014] showed
that response time increases of 500ms were noticeable by searchers and reduced click-
through rates. Beyond search result examination, Google recently integrated site speed
as a ranking feature [Singhal and Cutts 2010], in recognition of the importance of page
load time to searchers. Rather than leveraging latency as a signal, result prefetching
methods can be useful, especially in low-bandwidth settings, where access to content
may be delayed [Fan et al. 1999]. Recent work on “slow search” discusses the cost-
benefit tradeoffs in retrieving search results quickly and what could be accomplished
given more time [Teevan et al. 2014]. Beyond just making search faster (or slower),
there are other reasons why page load latency matters, for example, to address network
bandwidth constraints [Fan et al. 1999].

To address latency in query responses, researchers have designed caches to rapidly
serve results [Baeza-Yates et al. 2007], including ways to leverage historic search
behavior [Fagni et al. 2006; Jonassen et al. 2012; Lempel and Moran 2003]. These
methods limit the set of documents searched in response to queries, incurring increased
infrastructure costs. Search engines already try to reduce time to click by promoting
popular results for popular queries [Agichtein and Zheng 2006]. Since repeat visits
to the same result is common [Teevan et al. 2011], search engines have focused on
identifying and promoting sites from historic access data that are likely to be clicked;
reducing the time for searchers to locate these results on SERPs. For example, the Bing
search engine already uses new browser capabilities to prefetch results that are highly
likely to be selected [Psaroudakis and Khambatti 2013]. This enhances the search
experience by reducing overall latency in ways extending beyond SERP generation.

Studies of search latency have focused on desktop search settings. However, latency
effects may be even more acute in mobile search settings. As we show in Section 3,
there is a significant increase in PLT for landing pages accessed on mobile devices,
meaning that prefetching methods may be more useful on these devices. In this article,
we present prefetching models that perform effectively in both desktop and mobile
settings.

2.2. Prefetching

Researchers have studied Web page prefetching in general (see Domenech et al. [2012]
for a good survey). The challenge of reducing latency has been addressed in the context
of search engines, for example, in caching the results for frequent queries [Baeza-Yates
et al. 2007] or leveraging Web browser capabilities to prefetch definitive results for
common queries [Agichtein and Zheng 2006]. Other methods have used surfing pat-
terns in the aggregate [Padmanabhan and Mogul 1996; Yang et al. 2001; Pitkow and
Pirolli 1999] or individually [Fan et al. 1999] to prefetch pages that are likely to be
selected. Padmanabhan and Mogul [1996] use N-hop Markov models based on surfing
patterns for improving prefetching strategies for Web caches. Fan et al. [1999] leverage
a user’s historic surfing activity and a Markov predictor tree to predict future resource
requests. Pitkow and Pirolli [1999] proposed longest subsequence models instead of
Markov models. Sarukkai [2000] used Markov models to predict the next Web page
accessed. Yang et al. [2001] mined frequent sequences from Website access logs and
employed them to derive association rules that could be used in prefetching decisions.
More recently, White et al. [2009] used recent search interactions and other contextual
signals (e.g., incoming hyperlinks) to predict searchers’ future topical interests given
a Web page. Research on continual computation [Horvitz 1998] proposed decision-
theoretic methods for the ideal use of idle time for computational problem solving.
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Continual computational methods can be applied for selective (utility-directed) con-
tent prefetching, including partial prefetching of specific Web page elements, while
balancing associated costs and benefits.

Many of the existing prefetching methods proposed in the previous paragraph rely
on access to significant amounts of data reflecting searcher activity over time. As such,
these methods are static and, because they rely on sufficient volume in previous activi-
ties, only cover a subset of the resources that people access. This may be reasonable for
popular queries/pages or active searchers but less applicable for other scenarios with
less data (e.g., tail queries). The methods that leverage browsing data rely on being
able to track sequences of Web page visits, which can require significant infrastructure,
especially at scale across many Websites. It is also not clear the extent to which such
an approach applies in search scenarios, where the results returned for a query are
dynamically generated and the set of prefetching candidates may change over time
[Blanco et al. 2010]. Recent work on prefetching based on dynamic signals such as in-
teractions with resources yields much greater coverage of sought content but leverages
signals such as gaze tracking [Lee et al. 2015], which is inaccessible to mobile search
systems and impractical to apply at scale in both desktop and mobile settings (although
recent advances attention modeling in mobile and desktop settings suggest that may
be changing [Lagun et al. 2014; Papoutsaki et al. 2016]). In our earlier work [Diaz
et al. 2016], we demonstrated the feasibility of cursor-based prefetching in desktop
settings. In this article, we extend that work to also consider mobile settings, where
cursor movement signals are unavailable yet prefetching may be even more valuable.

Despite the lack of access to such rich interaction signals, prefetching of content
on mobile devices has still been well studied in light of the potential user benefits.
Their focus is on the tradeoffs between time saved from prefetching and the costs
associated with energy and cellular data usage [Higgins et al. 2013; Parate et al.
2013]. Components in these models include sequence modeling [Parate et al. 2013],
bulk prefetching [Mohan et al. 2013], and content analysis and scheduling [Higgins
et al. 2013; Wang et al. 2015a]. The tradeoff between energy usage and performance
in Web page loading (independent of prefetching) has also been the focus of detailed
study [Thiagarajan et al. 2012; Bui et al. 2015]. The most related work in this area
focuses on training predictive models using large amounts of log data [Lymberopoulos
et al. 2012]. However, despite its popularity, research in this area has not focused on
the search result prefetching challenge on mobile devices, as we do in this article. Our
work extends this research by introducing dynamic prefetching signals, allowing finer-
grained predictions with much stronger performance. Furthermore, because our study
focuses on Web search, we adopt signals from the search domain that are unavailable
in the more general setting.

2.3. Monitoring Interaction Behavior

Recently, there has been an increase in the use of rich models of interaction behavior
to better understand searchers’ interests, intentions, and attention on SERPs [Guo
and Agichtein 2010a; Lagun et al. 2014] and beyond [Guo and Agichtein 2012]. These
signals can be used to disambiguate searcher intentions [Guo and Agichtein 2010a],
or estimate search relevance [Huang et al. 2012; Lagun et al. 2014]. Many of these
methods rely on cursor movements as the core signal of searcher attention, especially
at scale [Huang et al. 2011], given that it has been shown to correlate with eye gaze
[Guo and Agichtein 2010b; Rodden et al. 2008]. Beyond controlled settings, recent
work has shown that such methods can be deployed at scale online [Buscher et al.
2012; Huang et al. 2011]. This facilitates a better understanding of search behavior
[Buscher et al. 2012] and enables predictions of SERP examination activity [Diaz
et al. 2013], improved relevance estimation [Huang et al. 2012], ranking [Lagun et al.
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2014], and predicting searcher satisfaction [Liu et al. 2015] based on common patterns
in cursor signals. From these data, we learn models to predict which results will be
clicked in real time and evaluate our models in a natural setting.

Human-computer interaction (HCI) researchers have predicted aspects of cursor
movement termination, focusing on endpoint prediction (i.e., predicting the terminal
location of the cursor) and target prediction (i.e., deciding between multiple targets).
Within HCI, these have traditionally been used in applications to expedite the ac-
quisition of targets. Endpoint prediction methods have used simple regression based
on peak movement velocity calibrated to the searcher [Asano et al. 2005], normative
kinematic laws that use a velocity-over-distance profile [Lank et al. 2007], Kalman
filters [Aydemir et al. 2013], neural networks [Biswas et al. 2013], inverse control
theory [Ziebart et al. 2012], or kinematic template matching, which treats velocity
profiles as two-dimensional stroke gestures [Pasqual and Wobbrock 2014]. Simple ver-
sions of target prediction leverages distance from the mouse cursor [Lane et al. 2005]
or consider angles between the movement vector and vectors for the target positions
[Murata 1998]. More sophisticated methods build probabilistic models based on previ-
ous clicks [Ziebart et al. 2012], consider whether users have entered into the corrective
sub-movement phase of their click [Aydemir et al. 2013], or use kinematic template
matching [Pasqual and Wobbrock 2014]. Related research in the HCI community has
used mouse movement data for user attention inference [Xu et al. 2016]. Although
there are similarities between that work and ours, experiments in this area are gen-
erally conducted in carefully controlled, artificial environments. On SERPs, there are
many results to choose from, there are many aspects of the page competing for searcher
attention in addition to the results (e.g., advertisements, related searches), and there
are preconceived biases that affect where people click in the result list, irrespective of
content (e.g., positional biases [Joachims et al. 2005] and cognitive biases [White 2013]).
All of these factors make the task of real-time click prediction on SERPs quite challeng-
ing, especially if searchers’ clicks disagree with the query’s aggregate click distribution.
Note that previous research in click prediction modeling (e.g., Richardson et al. [2007],
Dupret and Piwowarski [2008], Chapelle and Zhang [2009], Guo et al. [2009], and Wang
et al. [2015b]) focuses on the aggregated click distribution at the query-level instead of
the dynamic/real-time prediction for individual search events proposed in this article.

Cursor movements are unavailable in mobile settings, where the interaction is
primarily touch and voice based. As such, other signals such as the viewport may be
particularly useful. Huang and Diriye [2012] proposed the viewport as an estimate
of searcher attention in mobile settings. Huang et al. [2012] showed that scrolling
(viewport position adjustment) was a useful feature in models to estimate result
attractiveness and satisfaction. Buscher et al. [2012] showed that scrolling was a
useful feature in clustering searchers based on their SERP examination patterns.
Although based on cursor movements rather than scrolling, ViewSer [Lagun and
Agichtein 2011] operates under a similar principle that monitoring exposed parts of
SERPs can provide useful signals of interests and intentions. Focusing specifically on
mobile devices, research has shown that viewport monitoring can yield useful insights
regarding the relevance of search results [Guo et al. 2013] and searcher satisfaction
[Lagun et al. 2014; Williams et al. 2016]. Shokouhi and Guo [2015] recently used
viewport duration (and clickthrough data) to infer pseudo-relevance labels to rank
cards in proactive recommendation scenarios.

2.4. Contributions over Previous Work

Our research extends previous work in a number of ways. First, we focus on prefetch-
ing for individual search events, based on real-time user behavior during each
visit to individual SERPs. Most prefetching methods rely on static predictions and
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transition probabilities learned from historic data. Second, many of the studies of end-
point prediction (e.g., based on mouse cursor movements) focus on carefully controlled
studies in laboratory settings. In contrast, we operate in a non-controlled environment
with multiple targets, potential distractions, and biases that can affect behaviors ir-
respective of the relevance of the results retrieved by the search engine. Third, by
leveraging cursor movements and viewport-based behavior, our approach can better
adapt to the current search situation and less common informational queries—and
increase searcher efficiency and reduce resource waste compared to three strong base-
lines. Many current prefetching methods within Websites and search engines focus
on providing this support for popular pages only. Fourth, since we propose a model
that is learned offline from many searchers’ behavior, there is no need for searchers
to calibrate the model to accommodate their search activity before the first use (as is
the case in other models, e.g., Asano et al. [2005]). Finally, we break out our findings
in different ways and demonstrate that there are classes of information requests and
searchers for which our proposed dynamic prefetching methods perform well.

3. MOTIVATION

Before proceeding, it is important to quantify the potential gains from prefetching in
a Web search setting. If all landing pages were to load instantly, then there would be
no benefit from prefetching. Obviously, this is not the case given the computational
differences in the machines serving and accessing online content, and the network
transport pipeline. To better understand the potential of prefetching in Web search
settings (both on desktop and mobile), we analyzed one week of logs from the Internet
Explorer Web browser from the start of June 2015. PLT was defined as the time between
the page being requested and it fully loading in the Web browser. To help control for
variations in information needs between mobile and desktop, we focused on the set of
unique queries appearing in the dataset used for our prefetching analyses (described
later) and computed the PLT for the clicked landing pages for those queries on Bing.com
for queries issued from both desktop and mobile settings. Landing page load time was
made available through event logging in Internet Explorer. We focused on Bing since
that was the engine used in the remainder of our analysis. We did not control for URL
directly, as many websites have mobile variants and we wanted a realistic sense of
latency on different devices.

The cumulative distribution function for PLT on mobile and desktop between 200 and
5000ms is shown in Figure 3. Pages with PLTs <200ms are assumed to be cached and
hence excluded from this analysis. The mean and median PLTs are 1282ms and 672ms,
respectively, on desktop and 1470ms and 771ms, respectively, on mobile devices. If we
consider the 75th percentile for PLT (a commonly-used latency threshold, marked
in the figure), then there is a clear difference between desktop (950ms) and mobile
(1350ms) (highlighted in red in Figure 3). Searchers in mobile settings would benefit
more from prefetching. Searchers start to notice PLT delays at 500ms [Arapakis et
al. 2014] (or even earlier [Barreda-Angeles et al. 2015]), suggesting that if we could
make an accurate prediction about which results to prefetch, then we could noticeably
improve the search experience for approximately 60% of desktop SERP clicks and
approximately 70% of mobile SERP clicks.

Beyond the overall distribution, we also wanted to better understand the distribution
of PLTs at the searcher level. Focusing on searchers with at least 100 landing page visits
in the 1-week period (to provide sufficient data), we find that the average percentage of
landing-page PLTs of 500ms or more (first computed per searcher and then averaged
across all searchers) is 55.6% on desktop (standard deviation = 19.2%) and 65.2% on
mobile (standard deviation = 21.1%). In total, 16.6% of desktop searchers and 37.6%
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Fig. 3. Cumulative distribution function for PLT on mobile vs. desktop landing pages (spanning the range
200-5000ms). Median values for desktop and mobile settings are marked using solid and dashed lines,
respectively.

of mobile searchers were dramatically affected by high PLTs (defined as 75% or more
of their landing pages loading in 500ms or longer). Searchers with consistently higher
latencies were disproportionally located in developing countries (e.g., Eritrea, Chad,
Ethiopia), in remote locations (e.g., Falkland Islands, British Indian Ocean Territory),
in states in the U.S. with slower wired and cellular Internet connections (e.g., Alaska),
or are visiting less popular websites that may not have the infrastructure to support
rapid access. These findings motivate the development of technology to help people
access information more efficiently.

4. PROBLEM DEFINITION

Let U be a set of algorithmic results. Each result is associated with a specific SERP
region or area of interest (AOI), comprising the region spanning the result title, snippet,
and URL. Given that the SERP is presented to the searcher at time 0 and the searcher
clicks on u* € U at time T, we would like to fetch u* at some point before T. Decision-
making is online: Starting at time 0, the system observes a sequence of interactions (in
our case, cursor movements on desktop, and viewport changes on mobile) that might
inform its decision making. Once a decision to fetch has been made, the system may
not fetch another page until the searcher clicks on u*.

The formulation slightly differs between desktop and mobile. On desktop, this budget
represents a conservative estimate of the cost, in terms of time and bandwidth, of
prefetching the result, and considers all clicks equally, for example, for simplicity
the size of the page is not considered in the evaluation, even though prefetching a
large/media-rich document costs more than prefetching a smaller resource. On mobile,
where latency and bandwidth usage need to be more strictly constrained [Nicolaou
2013], we consider these factors directly in the evaluation of the prefetching model.

5. ALGORITHMS

We regard the search result prefetching challenge as a ranking problem. We model
probability of clicking on a result as a function of static features of the result (e.g.,
position) as well as dynamic features of the result (e.g., proximity of the cursor to the
result AOI on desktop or the fraction of result AOI that is visible in the viewport on
mobile). Our model computes this relevance score continually during the searcher’s
interaction with the SERP. If the score exceeds a predetermined threshold z (chosen
based on the desired operating characteristics in terms of precision and recall), then
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the landing-page content is fetched. In this section, we will describe the features and
models that we developed to address this challenge.

5.1. Features

Our features can be divided into static and dynamic based on whether they are the
same across all cursor movements for a query impression (static) or change as the
searcher moves the cursor or changes the viewport (dynamic). Each group can be
further divided into global and local. Global features of the SERP are the same over all
AOQOIs (e.g., SERP includes an advertisement). Local features refer to properties unique
to each result AOI (e.g., Euclidean distance between cursor and AOI; fraction of AOI
that is visible in the viewport). Features are computed every time the cursor position
is sampled (i.e., after 250ms have passed or the cursor has moved at least eight pixels)
on desktop and each time the content displayed in the viewport is updated (i.e., every
time the viewport moves at least 20px (a customizable parameter)) for each of the result
AOQlIs, since the goal is to predict the result AOI that will be selected. We stress that
all of our features are lightweight and available at runtime. Even aggregate features
such as click frequency and average PLT can be embedded into SERP content, and do
not need to be computed in real time by the prefetching model.

Previous research has shown that modeling differences in cursor movements with
the normative behavior for each searcher can help better estimate document relevance
[Guo and Agichtein 2012] on desktop, due to the larger variability in cursor movements,
while the benefit of modeling searcher variability is limited for viewport behavior on
mobile [Guo et al. 2013]. As such, for the desktop setting, we include the normalized
version for each feature for each searcher using the deviations from average for the
(searcher, feature) pair. Searcher deviation is defined as the difference between the fea-
ture value at the current cursor position and the average feature value for that searcher
computed over all their historic actions. Searcher deviation variants are included for
Dynamic Global and Dynamic Local features in our desktop setting.

The features of our models on desktop and mobile are summarized in Tables I and
II, respectively.

5.1.1. Static Global Features. Static global features capture properties of the impression,
which do not change throughout the query impression. Page features describe visual
aspects of the layout such as whether it includes an advertisement or a set of related
searches/query suggestions. Query features describe historically observed behavioral
properties of the query such as its frequency and its click entropy, a measure of the
randomness of clicks over results [Dou et al. 2007]. These historic features were com-
puted using a sample of query and click logs from the Microsoft Bing search engine,
spanning a time period of 1.5 years prior to the timeframe used for training and testing
our learned models.

5.1.2. Dynamic Global Features. Previous work has observed that search activity may
be context dependent. For example, Huang et al. demonstrate that the correlation
between gaze and cursor position may depend on how much time has elapsed since
the page loaded [Huang et al. 2012]. Our dynamic global features aim to capture these
within-impression changes in context.

On desktop, we capture the dynamics of cursor movements up to the cursor sam-
ple in question. Features include velocity, acceleration, jerk (i.e., rate of acceleration
change), and changes from previous cursor sample. These also include features that
capture where the cursor was located on the SERP, such as its horizontal and vertical
coordinates, the maximum vertical coordinate reached by the cursor and maximum
AOI rank that the cursor is observed passing over, and the number of non-hyperlink
clicks the impression has received up to the cursor sample. The rationale for these
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Table |. Features Used in the Desktop Prefetching Model. Coordinates Are Relative to the Upper-Left
Corner of the SERP. Distances, Coordinates, and Areas Are Measured in Pixels. A Set of Features Is
Generated for Each AOI x € X with Respect to the Current Cursor Position ¢; as Well as the History

of Cursor Positions C; = {, - . .,

¢}. Global Features Are Shared Across All AOls. Local Features
Include Information about the Candidate AOI x

Feature name Description

Static Global

ads(X) X has advertisement

querySugg(X) X contains a query suggestion (related search)

H(g) q click entropy computed over 1.5 years prior to study

freq(q) q frequency

Dynamic Global

x(cy) horizontal position of ¢;

yleg) vertical position of ¢;

dist(cs, ¢;—1) distance in pixels between ¢; and ¢;_1

nonhyper(C;) number of clicks in C; that are not on hyperlinks, for example, for text
selections in result snippets

maxY(Cy) maximum vertical position of C;

maxAOI(C;) maximum AOI rank of C;

cursordist(C;) total cursor distance of C;

time(cs, cg)
time(cs, ¢;—1)

total time of impression
time difference between ¢; and c¢;_1

Static Local

area(x) area of x (in pixels)

width(x) width of x (in pixels)

height(x) height of x (in pixels)

rank(x) rank position of x

x(x) horizontal position of x

ylx) vertical position of x

card(x) whether x has special image (e.g., a brand logo) and/or additional result
information such as deep links

answer(x) whether x is a vertical result (weather, stock, etc.)

Dynamic Local

vis(x, vg) x intersects current viewport

hover(x, ¢;)
reading(x, C;)

dist(x, ¢;)
angle(x, ¢;)

proximity(x, ¢;)

speed(x, ¢;)
accel(x, ¢;)
jerk(x, ¢t)
ontarget(x, ¢;)

xdist(x, ¢;)
ydist(x, ¢;)
dwell(x, ¢;)
titledwell(x, ¢;)

c; 1s over x

reading behavior on x (i.e., following text with cursor [Rodden et al.
2008])

distance of ¢; to center of x

angle between direction vector of ¢; to center of x. AOI with least
deviation receives 1, otherwise 0.

proximity changes of ¢; with respect to x. 2 = moving away from x, 1 =
moving toward x, 0 = same distance from x.

speed of ¢; toward x

acceleration of ¢; toward x

jerk of ¢; toward x

¢; on track to visit x. Project least-squares line through {¢; 5, ...¢:}.
Return 1 if it intersects x, otherwise 0

horizontal distance between ¢; and x

vertical distance between ¢; and x

dwell time of ¢; in x

dwell time of ¢; in result title of x

23:11

features is to capture the different stages of the cursor movements. A directed, rapid
movement may mean that the searcher has found content of potential value, while
slow, undirected movements may suggest that they are still searching. Determining
the maximum vertical position of the cursor offers insight into the number of search
results considered. Finally, to explicitly model reading behavior using cursor as an aid
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Table Il. Features Used in the Mobile Prefetching Model. A Set of Features
Is Generated for Each AOI x € X’ with Respect to the Current Viewport Position
v as Well as the History of Viewport Positions V; = {v, ..., v}. Global Features Are
Shared across All AOIs. Local Features Include Information about the Candidate AOI x

Feature name Description
Static Global

ads(X) X has advertisement

querySugg(X) X contains an query suggestion (related search)
H(g) q click entropy computed over 1.5 years prior to study
freq(q) q frequency

Dynamic Global

time(ve, vp_1) time difference between v; and v;_q
dist(vs, v,_1) distance in pixels between v; and v;_1
speed (v, v;_1) speed of movement

time(v, vg) total time of impression

numVis(vs, X) number of items in X intersecting with v;
fracVis(v, X) fraction of X intersecting with v,
width(v;) width of v;

height(v;) height of v,

x(vg) horizontal position of v;

y(vy) vertical position of v;

maxY (V) maximum vertical position of V;
maxAOI(V,) maximum AOI rank of V;
scrolldist(Vy) total scroll distance of V;
upscrolls(V;) number of scrolls up

downscrolls(V;) number of scrolls down

scrolls(Vy) number of scrolls in any direction
Static Local

area(x) area of x (in pixels)

width(x) width of x (in pixels)

height(x) height of x (in pixels)

rank(x) rank position of x

x(x) horizontal position of x

y(x) vertical position of x

answer(x) whether x is a vertical result (weather, stock, etc.)
CTR(x) clickthrough rate of x

avgPLT(x) average page load time (PLT) of x
sdPLT(x) standard deviation PLT of x

size(x) page size of x (in bytes)

Dynamic Local

vis(x, vy) x intersects v;

frac(vs, x) fraction of x within v;

titleVis(x, vs) title of x is in v;

visArea(x, v;) raw area of x intersecting with v;
frac(x, v¢) fraction of v; intersecting with x
dur(x, vz) duration of x on screen (ms)

dist(x, vs) distance of x to vy

relDist(x, vs) x is above or below the v;

numVis(x, Vy) number of times x has been visible

[Rodden et al. 2008] (which could be an indicator of interest in a landing page), a binary
feature captures whether two consecutive left-right movements of cursor are observed.

On mobile, the features include simple time features as well as global properties of
the viewport that are not related to any specific AOI on the SERP, such as scroll position
and speed. Also included are general measures of engagement (e.g., the depth to which
the result list is examined, the number of AOIs that are visible in the viewport at any
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particular time), similar to those used in the measurement of searcher satisfaction
[Lagun et al. 2014; Williams et al. 2016].

5.1.3. Static Local Features. Static local features provide two types of information about
the result AOI: attractiveness and download impact. Attractiveness features refer to vi-
sual properties related to searcher attention and clickthrough, such as the AOI position
and dimensions [Diaz et al. 2013]. On mobile, the size of the page and the historic PLT
may be especially important given bandwidth limitations. As such, we implemented
features related to size and historic latency to incorporate that information directly
into the prediction process. Page size reflects the number of bytes of the target docu-
ment taken from a crawl of the page before our study began. Since requesting a page
may require executing and rendering supporting JavaScript source, images, and other
content (the impact of which may not be fully reflected in the size of the page), we also
included a feature capturing the historic page load time measured for search engine
users. A page’s average load time in seconds is derived from 6 months of Internet Ex-
plorer log data from a time period preceding our experiments. In the event that either
value is missing, we use the mean feature value instead.

5.1.4. Dynamic Local Features. On desktop, we capture the interaction between cursor
movements and each AOI, in particular, to capture if the cursor is moving towards the
AOI for a potential click. Features include the overall, vertical, and horizontal distances
between the AOI and the cursor, the angle between the moving direction of the cursor
and the AOI, and, in turn, the proximity between the two (2 = moving away from AQOI,
1 = moving toward AOI, 0 = same distance from AOI), as well as whether the AOI
is on target of the cursor trajectory (i.e., draw a least-squares line through last five
cursor movements and return a Boolean value with whether it intersects each AOI).
We also compute the dwell time of the cursor hover on the AOI and the title of the AOI,
respectively, as they may be strong indicators of a potential click on the AOI. We also
capture whether the AOI is visible in the viewport. If the AOI is hidden from view, then
it cannot be selected.

On mobile, we capture the relationship between a target AOI and the viewport
position. These features include binary variables indicating the visibility of the AOI or
its title as well as scalar variables indicating how much of the AOI is visible, the total
time for which the AOI is visible, and the number of distinct occasions on which the
AOQI is visible in the viewport (i.e., where it is completely hidden and then reappears
as the result of scrolling). Since a target AOI must be visible in the viewport to be
selected, we hypothesize that this information about the viewport-AOI relationship
will be highly predictive of a click and hence be useful for prefetching purposes.

5.2. Model

We are interested in modeling the relationship between our set of pre-click features
(Section 5.1) and the searcher result selection (click) event. We train a regression model
to predict which result will be clicked. The training procedure builds an ensemble of
decision trees based on gradient boosting [Burges 2010]. This technique has been
shown to provide state-of-the-art performance for various applications. In the context
of learning to rank, we treat each cursor or viewport sample as a query and each u as
a document. The objective of the model is to predict u*. At test time, for each cursor
or viewport sample, we featurize and score each u € U/ and if the score of one or more
results is above 7, we fetch u with the highest score. If no page is scored above this
threshold, then we wait for the next interaction event (cursor move or viewport move)
and re-evaluate the set of results. Since this threshold allows the system designer
to manipulate model performance per desired operating characteristics, we present
results for various threshold values in our experiments.
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6. LOGGING SEARCHER BEHAVIOR

In this section, we describe the method we employed to collect the data used to train
and test our prefetching models. To record searcher interactions with SERPs at scale
without the need to install any browser plugins, we used an efficient and scalable
approach [Buscher et al. 2012]. JavaScript-based logging functions were embedded into
the hypertext markup language (HTML) source code of the Bing SERP. The datasets
differed for desktop and mobile settings. We describe them separately in this section.

6.1. Desktop

To obtain a detailed understanding of searcher interactions with SERPs shown in desk-
top settings, we recorded information on mouse cursor movements, clicks, scrolling, text
selection events, focus gain and loss events of the browser window, as well as bounding
boxes of several AOIs on the SERP, and the browser’s viewport dimensions and verti-
cal position. We optimized our implementation and ran large-scale live experiments to
ensure no significant delay in PLT for SERPs with this logging enabled.

The JavaScript function for logging mouse cursor positions checked the cursor’s
horizontal and vertical coordinates relative to the top-left corner of the SERP every
250ms. Whenever the cursor moved more than eight pixels away from its previously
logged position, its new coordinates were sent to the remote Web server. Eight pixels
correspond to approximately the height of half-a-line of text on the SERP. We used this
approach rather than recording every cursor movement since we wanted to minimize
the data gathered and transmitted and not adversely affect the user experience with
delays associated with log data capture and data uploads. Since cursor tracking was
relative to the document, we captured cursor alignment to SERP content regardless of
how the searcher reached that position (e.g., scrolling or keyboard).

Mouse clicks were recorded using the JavaScript onMouseDown event handling
method. The backend server received log entries with location coordinates for every
mouse click, including clicks that occurred on a hyperlink as well as those that oc-
curred elsewhere on the SERP (even on white space containing no content). To identify
clicks on hyperlinks and differentiate them from clicks on inactive page elements, we
logged unique hyperlink identifiers embedded in the SERP.

The width and height of the browser viewport in pixels at SERP load time were also
logged. This told us which AOIs were visible. Browser window resizing during SERP
interaction was not accounted for. We also recorded the current scroll position, that
is, the vertical coordinate of the uppermost visible pixel of the SERP in the browser
viewport. This coordinate was checked 3 times per second and was recorded whenever
it had changed by more than 40 pixels compared to the last logged scrolling position.
This corresponds to approximately the height of two lines of text.

Simply logging the text of what was displayed on the SERP is insufficient for recon-
structing its layout since SERPs vary per query (depending on whether vertical results
are shown, etc.), font sizes, and other browser preferences.

To reconstruct the exact SERP layout as it was rendered in the searcher’s browser, we
recorded the positions and sizes of AOIs. We use the method from Buscher et al. [2012]
to identify and record the exact position of AOIs on SERP loading. The specific AOIs
recorded were as follows: (i) top and bottom search boxes; (ii) left rail and its contained
related searches, search history, and query refinement areas; (iii) mainline results area
and its contained result entries, including advertisements and answers; and (iv) right
rail. Some of these AOIs are visualized in Figure 4. For each AOI bounding box, we
determined and logged the coordinates of its upper left corner as well as its width
and height in pixels. Using this information, we map cursor positions and clicks to
AOQOIs. Although we record the position of all AOIs shown in Figure 4, we focus only on
predicting clicks on 1 of the 10 result AOIs.
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Fig. 4. Segmentation of a SERP in the desktop setting by areas of interest (AOI). Each of the 10 search
result captions (title, snippet, URL) is regarded as its own AOI. These 10 result AOIs are our click prediction
targets. A similar segmentation was performed for mobile SERPs.

6.2. Mobile

To obtain a detailed understanding of interactions with the SERP, we recorded (among
other things, for example, result clickthrough) information on viewport position and
size, scrolling, and the bounding boxes of several AOIs on the SERP. The method used
for recording this SERP layout data was similar to that used in the desktop setting.
The search results are displayed in a dedicated application on the phone where the
results from Bing.com are shown in a SERP. The width and height of the viewport in
pixels at SERP load time were logged. The viewport dimensions could not be adjusted.
Overall, over 60% of the viewports had dimensions of approximately 430 x 520 pixels,
illustrating the constrained view on SERPs offered by mobile devices.

The viewport sampling rate is impacted by two factors: (i) the frequency with which
the Web browser sends the scroll update event (which is browser specific) and (ii) if
the top of the viewport changes by at least 20px since the previous sample (this is
a configurable parameter). We also recorded the current scroll position, that is, the
vertical coordinate of the uppermost visible pixel of the SERP in the browser viewport,
each time the searcher swiped up or down on the touch device. When the position of
the viewport changed, the visible part of the SERP also changed. Tracking positional
information of AOIs and the viewport allowed us to compute features for prefetching
such as the distance between each AOI and the viewport at any point in time, in
addition to other features such the viewport speed during scrolling, relative to each
result.

7. BEHAVIORAL CHARACTERISTICS

We now describe the characteristics of searcher behavior reflected in the datasets,
broken out by the two settings: desktop and mobile.
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7.1. Desktop

In this section, we characterize the features proposed in Section 5.1 for building the
prefetching models. Since our goal is to prefetch clicked results, we wanted to under-
stand whether certain features could indicate future clicks.

We recorded the SERP interactions from the Microsoft Bing Web search engine. Log
data were gathered from searchers in the control groups (i.e., with no experimental
treatments on frontend or backend) of multiple experiments on the search engine in the
U.S. English geographic locale, run between May 2011 and June 2012,! during external
experiments on small fractions of user traffic. For the duration of the experiments, all
queries from searchers in the control groups (which is a representative sample of
the overall search traffic) are recorded along with their cursor movements. We report
analysis across millions of cursor samples from 186k query impressions which were
part of the external experiments.

The results are summarized in Table III, and the discussions are organized by the
feature group. We focus on the two classes of cursor samples with clicked AOI and
unclicked AOI to understand the changes of feature values across the two groups. Fea-
tures in the two global groups are impacting at the impression level, that is, features
that impact overall clickthrough for the entire impression would, in turn, impact click-
through for individual AOIs on the SERP. In contrast, the features in the two local
groups impact directly regarding the AOI in question.

Static Global: All the features in this group significantly differ among the two groups.
Interestingly, the queries with fewer clicks have higher frequencies, which may be due
to the more likely presence of answer results—this hypothesis is further supported by
the higher value of the has answer feature in the StaticLocal group.

Dynamic Global: Almost all the features in this group significantly differ among the
two groups except for cursor ycoord and cursor total time. The total cursor distance of
cursor for the unclicked impressions is higher, as is the number of non-hyperlink clicks
(often associated with text selections) and evidence of reading behavior, which suggest
that people are exploring and more deeply engaged with examining the SERP (rather
than clicking).

Static Local: All the features in this group significantly differ among the two classes.
As we can see, certain types of AOIs are indeed more likely to attract more clicks. For
example, the clicked class has larger area(x), which makes intuitive sense, as larger
AOIs may be more likely to attract people’s attention. Other examples include the rate
of AOI having the card attribute (e.g., additional information such as brand logo and/or
deep links) that may increase both people’s confidence in document quality as well
as attractiveness, resulting in more chance of clickthrough. In contrast, having the
answer directly in the AOI, as discussed earlier, reduces the chance of the AOI being
clicked due to “good abandonment” [Huang et al. 2011]. Also, as expected, the clicked
AOQI tends to have lower rank (demonstrated by both lower rank(x) and y(x)).

Dynamic Local: There are interesting differences in this group’s features. Cursor
hovers on the AOI are a significant indicator of an impending click, as is dwell time on
the AOI (which is much higher when a click is observed). The speed and acceleration
toward the AOI suggests that the searcher is performing a focused movement before
the click. This is also supported by the higher value of ontarget(x, ¢;).

Overall, there is strong evidence that there are statistically significant differences
in the feature values when there are clicks versus when no clicks are present. The

1Since the style of the SERP has not been changed significantly since then (e.g., knowledge cards/direct
answers were already prevalent on Bing in 2011 and 2012), we believe the findings from this dataset remain
representative of current behavior. Nevertheless, we plan to collect new data from live experiments to confirm
whether these findings still hold.
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Table IlI. Descriptive Statistics of the Proposed Features for the Two Classes of Cursor
Samples with Clicked AOI and Un-Clicked AOI. The Differences between the Two
Classes Are Statistically Significant for the Majority of the Features Based on Welch'’s t-Test
(p < 0.05, Adjusted for Family-wise Error Rates Using a Bonferroni Correction), Except for
Features That Are Noted with *. The Values in the Table Denote the Mean Average and
the Standard Deviation (in Parentheses). Also Shown in the Table Is the Cohen’s d Value
(Effect Size). Large Effects (d > 0.8) Are Marked in Bold

Mean (Standard deviation)

Feature name Unclicked Clicked Cohen’s d
Static Global

freq(q) 79K (408K) 74K (389K) 0.0128
H(g) 1.697 (1.218) 1.630 (1.186) 0.0564
ads(X) 0.330 (0.470) 0.322 (0.467) 0.0171
querySugg(X) 0.739 (0.439) 0.795 (0.403) -0.1384
Dynamic Global

x(cy) (pixels) 457 (277) 468 (272) —-0.0404
y(cy) (pixels)* 334 (224) 334 (228) 0.0000
dist(cy, ¢;—1) (pixels) 89 (123) 87 (121) 0.0165
nonhyper(C;) 0.122 (0.010) 0.103 (0.010) 1.9000
maxY(C;) (pixels) 396 (246) 397 (253) -0.0040
maxAOI(() 3.10 (2.25) 3.21 (2.10) —0.0522
cursordist(C;) (pixels) 773 (918) 765 (918) 0.0087
time(cy, cg) (secs)™ 47 (54) 47 (55) 0.0000
time(cy, ¢;—1) (secs) 6.17 (15.70) 5.93 (13.70) 0.0174
Static Local

area(x) (pixels?) 58510 (35340) 75177 (51117) -0.3300
width(x) (pixels) 682 (195) 632 (86) 0.5337
height(x) (pixels) 89 (56) 120 (81) -0.3873
rank(x) 5.75 (2.72) 2.57 (2.27) 1.3873
x(x) (pixels) 148 (75) 177 (39) -0.7021
y(x) (pixels) 515 (414) 354 (261) 0.5968
card(x) 0.002 (0.043) 0.192 (0.394) —-0.4933
answer(x) 0.375 (0.484) 0.136 (0.343) 0.6817
Dynamic Local

vis(x, vg) 0.527 (0.499) 0.755 (0.430) -0.5261
hover(x, ¢;) 0.002 (0.107) 0.319 (0.466) —-0.6953
reading(x, C;) 0.081 (0.273) 0.074 (0.261) 0.0268
dist(x, c;) (pixels) 558 (331) 367 (283) 0.6694
angle(x, ¢;) 4.21(65.41) 16.39 (11.23) —-0.6883
proximity(x, ¢;) 1.28 (0.84) 1.23 (0.61) 0.0804
speed(x, ¢;) 4.77 (36.47) 7.03 (39.04) —0.0581
accel(x, ¢¢) —0.104 (96.88) 0.667 (98.62) -0.0078
jerk(x, cz)* 2.45(1010.79) 3.42 (977.76) -0.0010
ontarget(x, ¢;) 0.110 (0.372) 0.136 (0.455) -0.0576
xdist(x, ¢;) (pixels) 316 (270) 299 (265) 0.0641
ydist(x, ¢;) (pixels) 389 (312) 155 (176) 1.2697
dwell(x, ¢;) (secs) 0.08 (0.64) 1.03 (2.50) —-0.3883
titledwell(x, ¢;) (secs) 0.03 (0.37) 0.34 (1.46) -0.2170

results suggest that prefetching models learned from these features may be useful for
the important task of predicting which search result will be selected. Given the large
sample sizes, even small differences in the means of the feature values are likely to
be statisticially signficant. To address this, we also report the effect size in Table III,
computed via Cohen’s d. Thresholds for d correspond to small (0.2), medium (0.5), and
large (0.8) effects [Cohen 1977]. There are especially large effects for features such
as the rank position of the result AOI, the number of non-hyperlink clicks, and the
y-distance between the cursor and the result AOI. Before describing the prefetching
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Table IV. Characteristics of Viewport Activity. The Values
Represent the Average or Percentage Across All Impressions
in Our Dataset. The Values in Parentheses Denote the
Standard Deviations

Behavioral characteristic Value
Number of captions shown at one time 3.059 (1.473)
Percentage of SERPs with scrolling 58.65%
Average scroll depth 4.586 (3.757)

models, we first present some statistics on interaction and selection behaviors in the
mobile setting.

7.2. Mobile

We analyzed viewport activity in a week of Bing.com logs from June 1-7, 2015, from
a sample of 34M query impressions. Table IV reports a number of features that are
important in understanding how people use the viewport to inspect mobile search
results. The average scroll depth denotes the average of the maximum rank positions
visible in the viewport. Over the course of the query impression, searchers decide
between the results in the retrieved SERP, but at any point in time there are only
a few options available. As mentioned earlier, since visibility in the viewport is a
prerequisite of selection, the presence of a result in the viewport at any time could be
valuable for predicting future clicks. Table IV also reveals that searchers scroll on 60%
of the SERPs and on average consider an additional one to two results beyond what is
visible in the initial viewport.

Beyond general statistics about how people employ viewports on SERPs, there may
be differences in how people consider the result captions that were presented on the
SERP. There are a number of ways that examinination can be defined. We focus on
these definitions: (i) views and clicks, (ii) total time for which the caption is visible
in the viewport and arrival time (i.e., the time from SERP load until the caption is
first visible in the viewport), and (iii) the distribution of captions that were considered
before a click, all as a function of rank position. Figure 5 presents the distributions
down to the eighth rank position (when automatic SERP pagination is initiated in the
Bing mobile search application).

The results from the figures mirror those from previous studies on eye-gaze tracking
[Joachims et al. 2005; Cutrell and Guan 2007a] and cursor tracking [Huang et al.
2011]. Most of the top-ranked captions are examined by the searcher for some amount
of time. The top result is only viewed around 90% of the time because there may be top of
page advertisements or recourse hyperlinks that push the top result caption outside
of the viewport on SERP load. The click distribution also follows a similar trend to
that reported in previous work [Joachims et al. 2005]. We observe that searchers spend
considerably more time inspecting the top-ranked results (3—5s on average) and they
examine the results from top to bottom (both noted previously [Cutrell and Guan 2007a;
Joachims et al. 2005; Huang et al. 2011]). Note that the visible time for the caption
(i.e., the total time that any amount of the caption text is visible in the viewport) is
likely an overestimate of the time that searchers spend examining the caption (and
is approximately 2—3 times that reported in eye-gaze tracking studies on the desktop
[Cutrell and Guan 2007a]), especially since multiple result captions are often visible
simultaneously.

Given a click on a result at a rank position, we examined the relative positions
of the other results that searchers may have considered (denoted in terms of a dif-
ference in rank position from the clicked result: negative means after the clicked re-
sult, positive means before it (as in Joachims et al. [2005])). To do this, we focused on
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Fig. 5. Distributions per rank position of (i) result captions visible and clicked, (ii) visible time and arrival
time (standard error of the means are included but are too small to be visible given the large sample sizes),
and (iii) box-and-whisker plot with relative result positions considered before click.

captions that are visible in the viewport for at least 500ms. The box-and-whisker plot in
Figure 5 shows that for clicks on the top three results people often considered proximal
results (likely because multiple results are visible in the viewport), but for results at
rank position 4 and above, it is more common to consider only the results above the
clicked result. Since searchers examine results sequentially, they may stop when they
encounter a result of interest (and not consider the next result like has been noted
in the prior gaze and cursor tracking studies referenced above, since it requires addi-
tional scrolling effort). Focusing on click decisions in more detail, we find that (i) there
is a fair positive correlation between consideration time and the presence of a click
(point-biserial correlation (r,,) = 0.377, p < 0.001) and (ii) there seems to be sufficient
time before the click (i.e., median time-from-visible-to-click = 3948ms), when searchers
are considering a specific result to fully prefetch it (i.e., median PLT (from earlier) =
771ms).

Overall, the evidence suggests that analyzing viewport dynamics can offer detailed
information into how people examine SERPs in mobile settings. The results align well
with how people examine results in desktop settings. Aspects of viewport behavior,
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such as scroll depth and time spent viewing a caption, may make useful features for
prefetching purposes. We explore this later in the article. Beyond specific patterns, the
viewport also provides data on which results could be clicked that helps scope the set
of results to be considered for prefetching purposes.

8. EXPERIMENTAL SETUP
We now describe experiments to measure the effectiveness of our prefetching models.

8.1. Data

We selected a random set of 100k searchers (and their 1M queries) (desktop) and 100k
searchers (and their 500k queries) (mobile) from our datasets described earlier.

For both mobile and desktop data, the final, processed dataset consists of batches of
instances of the form: (o, ¢, u, ¢, y) where o is a unique identifier for this impression,
encoding information about the searcher and query, ¢ denotes the timestamp (relative
to 0) of the measurement, u is a unique identifier for the AOI, ¢ represents all of
the feature values computed as discussed in Section 5.1, and y is a Boolean variable
indicating whether u was clicked during the session o. In the mobile setting, we take
the additional step of modeling prediction decisions within the context of bandwidth
constraints. That is, incorrectly downloading a very large page is worse than incorrectly
downloading a smaller page. The target for each instance is the bandwidth-weighted
quality of the link, defined as follows. The clicked link has the highest grade. The
grades of the unclicked links are binned into below-average page size, average page
size, and above-average page size. These four grades provide an ordinal target for our
regression model. We leave alternative grading methods for future work. We regress
against the quality target for each instance in the training set using the ensemble of
gradient-boosted decision trees as noted above.

We focus on impressions with exactly one detected click in both settings? and at least
five detected cursor positions in the desktop setting to provide a sufficient number of
mouse movements from which to perform analysis (corresponding to 73.8% of all query
impressions on desktop). Running experiments with a smaller number of minimum
cursor positions resulted in no performance differences relative to our baselines. This
is because when cursor data is missing (<10% of all query impressions), our model
effectively falls back to the strongest baseline comprising the original search result
ranking (as it is part of our model), and our gains over this baseline would just be
slightly diluted by including this small fraction of traffic but findings and conclusions
would remain the same.

We split the set by searcher and time with 80% for training and 20% for testing. That
is, all tuples belonging to the same searcher—and therefore impression—were in the
same split.

8.2. Training

Given the large sample sizes involved, a single train-test split will yield reliable results.
The prediction targets are set to 4 for clicked hyperlinks and 0 for hyperlinks that were
not clicked. Our model outputs a score for each hyperlink at each cursor movement,
stopping and prefetching a link when its score exceeds a threshold t. Instead of opti-
mizing for a fixed t, we present precision-recall curves to demonstrate performance at
different operating points. When training our model, we fixed the following hyperpa-
rameters: number of trees to 500, number of leaves per tree to 70, minimum samples
per leaf to 2000, and learning rate to 0.1. We did not modify these parameters using a
validation set and believe that performance may be improved with some tuning.

2Comparisons on impressions without clicks are less relevant since they do not impact the user experience.
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8.3. Evaluation

We focus the evaluation on prefetching algorithmic search results. As discussed in
Section 3, the page load time can vary dramatically. We therefore want to test our
algorithm under various regimes. For a given score 7, we evaluate our algorithm when
given at least £ milliseconds to fetch a page before the click. So, for example, if £ is 500ms
and the searcher took 2000ms to investigate the page before clicking, then we can
observe the searcher’s behavior for 1500ms before losing our chance to get any benefit
from prefetching. We compute precision and recall for ¢ € {500, 5000} to demonstrate
regimes of normal and severely limited bandwidth. For a given ¢, the true positive (T'P)
is defined as the prefetching decision made for the link that was actually clicked at
least ¢ time later. A true negative (TIN) occurs when the system accurately predicts that
no clicks on any links occurred during the impression. Prefetching an unclicked target
link is considered false positive (FP) while prefetching made with leadtime longer than
¢ is considered as late positive (LP). A false negative (F'N) is an impression where
the model did not select any link, even though the searcher eventually clicked one.
We evaluate the performance of our models (and the baselines described in the next
subsection) using precision and recall. With the above definitions, the precision is then
defined as TP/(TP + FP) while recall is defined as TP/(TP + LP + FN). Notice that a

random prefetching system will achieve precision of ﬁ

We consider two metrics capturing aspects unique to the mobile setting. The first
metric, latency, measures the amount of time the searcher will wait after the click. In
the event of the system correctly prefetching the clicked result, the searcher incurs a
latency of 0; otherwise the latency is proportional to the clicked page size. In practice, we
normalize this value to a range between 0 or 1 to allow comparison across impressions.
As such, the latency is also equivalent to the miss rate. The second metric, bandwidth
fallout, measures the amount of data fetched during the impression over the data
explicitly requested by the searcher. In the event of the system correctly prefetching
the clicked result, the searcher incurs a bandwidth fallout of 0; otherwise the bandwidth
fallout is proportional to the sum of the size of any incorrectly fetched pages. To allow
comparison between impressions, we normalize the landing-page sizes relative to the
maximum landing-page size in the candidate set and normalize a query impression’s
bandwidth fallout to lie between 0 and 1.

Latency and bandwidth fallout empirically trade off in most situations. A system
that prefetches no pages will achieve a maximum latency of 1 and a minimum band-
width fallout of 0. Conversely, if a system prefetches every page, then it will achieve
a minimum latency of 0 and a maximum bandwidth fallout of 1.3 Qur threshold t al-
lows us to control where the system operates between low bandwidth/high latency and
high bandwidth/low latency. We have observed empirically that latency monotonically
improves and bandwidth fallout monotonically degrades as we reduce the operating
threshold. As such, in our experiments, we measure system performance at a range of
values for 7.

Resource and timing constraints limit the amount of prefetching that a system can
perform before the searcher clicks. In order to model this, we restrict our system to
prefetching at most one page. As a result, our bandwidth fallout ranges between 0,
when the system correctly prefetches the clicked page, and 1, when the system incor-
rectly prefetches the largest landing page on the SERP. The latency metric remains
unchanged.

3However, such a system though may incur latency due to bandwidth saturation or request ordering.
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8.4. Baselines

We employed three strong baselines: (i) the original search engine ranking, (ii) historic
clicks from all searchers for the query, and (iii) historic clicks from the current searcher
for the query. These baselines, in particular the latter two, are similar to prefetching
methods proposed in prior research, in which, prefetching is determined by static
estimates of likelihood of future content access from historic usage data [Agichtein and
Zheng 2006; Fagni et al. 2006; Jonassen et al. 2012; Lempel and Moran 2003]. The
baselines are defined as follows.

Search engine ranking: This baseline always prefetches the top-ranked result for the
query as returned by the Bing search engine at the time the logs were collected. Note
that this baseline is expected to be very strong since commercial search engines rank
results by leveraging a variety of sources of evidence, including content and historic
usage data, and the top-ranked search result often receives most clicks.

Historic clicks (all searchers) (denoted p(clicky;)): Selects the most popular clicked
URL for the query. This baseline is a simplified proxy of the previous work in click
prediction modeling (e.g., Richardson et al. [2007], Dupret and Piwowarski [2008],
Chapelle and Zhang [2009], Guo et al. [2009], and Wang et al. [2015b]), which fo-
cuses on aggregated prediction of clicks (e.g., query, result pair) instead of the dy-
namic prediction for individual search event described in this article. Nevertheless,
this group is a natural baseline to illustrate the value of the proposed dynamic predic-
tions over the state-of-the-art static predictions. Multi-year click logs from a separate
data source (same search engine but not the cursor-tracking flights) were used to com-
pute the probability of selecting a particular URL given the current query. The separate
dataset was much larger than the set of data collected during the online cursor tracking
experiments. This enabled broader query coverage and more reliable click predictions.
The result that is most likely to be clicked based on this historic data was prefetched if it
appeared in the current result ranking. To improve coverage, all URLs were normalized
to remove trailing slashes, lowercase, and collapse https and http protocols.

Historic clicks (current searcher) (denoted p(clicksearcher)): Applies the personal nav-
igation algorithm [Teevan et al. 2011] to prefetch the result that was visited by the
current searcher historically for the current query. Specifically, if the searcher has vis-
ited the same result for the previous two instances of the query, then that result will
be prefetched for the current (third) instance of the query if it appears in the result
ranking. URLs were normalized as with the previous baseline.

9. RESULTS
We now present our experimental results.

9.1. Desktop

We present the results of our prefetching experiments for different leadtimes in the
precision-recall curves in Figure 6. As we can see from these curves, for comparable
recall levels, we achieve substantial improvements over prefetching based on all cursor-
agnostic methods. Although performance drops when we require a conservative five
second leadtime, our algorithm still outperforms baselines by a significant margin. We
present the results of significance tests in Table V for a high-precision model (with a
high value of t) and a high-recall model (with a low value of 7).

9.1.1. Effect of Query Type. One might suspect that prefetching decisions for naviga-
tional queries, because they have a single target result, can be made without cursor
information. To test this, we examined the performance of our algorithm on queries
defined as navigational (i.e., with a click entropy less than or equal to one, as in Teevan
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Fig. 6. Click precision and recall. The solid line indicates performance as a function of the score threshold
7 for a leadtime ¢ of 500ms. The dashed line indicates the performance for a leadtime ¢ of 5s. The points
indicate the performance of baselines prefetching based on rank position (A), the probability of click (all
searchers, p(clicky;)) (M), and probability of click (current searcher, p(clicksearcher)) (®).

Table V. Comparison with Baselines. Superscripts
Denote Statistically Significant Improvements
over a Competing Run Using a Student’s t-Test
(p < 0.05) with Respect to Rank (r), p(clicka) (a),
p(clicKsearcher) (U), High Precision Model (P), or High
Recall Model (R)

Model Precision Recall
rank 0.6052 0.60229P
plclicky) 0.399 0.3264
plclicksearcher) 0.6972r 0.032
high recall 0.7232ur 0.6702uP
high precision 0.8772wR 0.5672¢

et al. [2008]). Figure 6(a) demonstrates the higher performance of all methods, includ-
ing baselines. The differences in performance are statistically significant (p < 0.05).
We similarly investigated the performance of our model when evaluating only on infor-
mational queries (i.e., queries with a click entropy of two or more (again, as in Teevan
et al. [2008]). These queries involve more thorough examination of the ranked list.
This behavior can result from either multiple intents, poor retrieval performance, or
higher recall intent. Because of the diversity of the click patterns, we suspect that our
baselines will perform less well on these queries. The results (Figure 6(b)) demonstrate
the lower performance of all runs, including our model. Nevertheless, the model-based
approach significantly improves over the baselines (p < 0.05).

9.1.2. Feature Ablation. We present the feature ablation experiments in Table VI, where
we remove one feature group at a time to examine the effectiveness of each of them in
the presence of other feature groups. To do this, we use the high-precision model, whose
overall results are reported in Table V. Static features, taken as a whole, contribute
substantially (removing them results in a 6.6% drop in precision and a 3.5% drop in
recall). This reflects the importance of visual layout and attractiveness in successful
prefetching. Importantly, the degradation is not observed when suppressing global or
local features alone, suggesting that static features perform best when using conjunc-
tions of local and global features. Dynamic features, taken as a whole, also provide
significant information (removing them results in a 5.2% drop in precision and a 23.8%
drop in recall). The majority of this contribution comes from local features, suggesting
that information about the AOI with respect to the cursor are critical to high perfor-
mance. The local features are important in recall since they provide signals about each
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Table VI. The Effectiveness of Prefetching Models
Trained Suppressing the Specified Feature Groups
against the Full Model Trained with All Features the
Score Threshold 7 of 3 and a Leadtime ¢ of 500ms.
* Represents Statistically Significant Decreases in
Performance with Respect to Using All Features

Using a Student’s t-Test (p < 0.05)

Suppressed Precision Recall
— 0.877 0.567
Static Global 0.865* 0.566
Static Local 0.875 0.531*
All Static 0.819* 0.547*
Dynamic Global 0.877 0.563
Dynamic Local 0.876 0.464*
All Dynamic 0.831* 0.432*
Searcher Deviation 0.880 0.563

Table VII. Feature Importance in Desktop Setting. The
Ten Most and Least Important Features and Weights.

Weights Are Normalized to Be in Unit Range with
Respect to the Most Important Feature (hover(x, ¢t)

from the Dynamic Local Class). “Dev” Denotes That
Features That Are Based on the Deviations from the

Normative Behavior for the Current Searcher

Feature name Class Importance
hover(x, ¢;) DL 1.0000
card(x) SL 0.4433
rank(x) SL 0.3738
maxAOI(C;) DG 0.2288
freq(q) SG 0.0773
answer(x) SL 0.0718
ydist(x, ¢;) DL 0.0691
H(g) SG 0.0659
y(x) SL 0.0411
height(x) SL 0.0410
x(c;) dev DG 0.0008
dist(cs, ¢;—1) dev DG 0.0007
vis(x, vy) DL 0.0006
proximity(x, ¢;) DL 0.0002
speed(x, ¢;) dev DL 0.0001
accel(x, ¢;) dev DL 0.0001
jerk(x, ¢;) DL 0.0001
jerk(x, ¢;) dev DL 0.0001
ontarget(x, ¢;) DL 0.0001
reading(x, C;) DG 0.0000

R. White et al.

of the AOIs that may be missed in general SERP-level analysis. For the high-precision
model, searcher deviation features appear to add no value over the other features, in

combination.

9.1.3. Feature Importance. Finally, we wanted to understand feature importance. We
present the most and least informative features in Table VII. Unsurprisingly, hovering
over an AOI is a strong signal that a click is imminent. Other Dynamic Local features,
such as AOICursor ydistance, are also important but are not in the top five. While
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Fig. 7. Performance by query type. The line shows performance as a function of the score threshold z.
Points indicate the performance of baselines prefetching based on rank position (A), the probability of click
(all searchers, p(clickyy)) (+), and probability of click (current searcher, p(clicksearcher)) (x). Historic click
behavior is used to measure performance for navigational queries (7(b)) and informational queries (7(c)).
Lower values are better. Note that, because of our prefetch budget and nonuniform misclassification costs,
we may not observe bandwidth fallout values in our experiments, resulting in truncated curves.

features such as the rank position of the result AOI and the distance between the cur-
sor and the AOI might seem obvious, others are less so. The presence of a card suggests
that the visual attractiveness of an AOI may result in a higher clickthrough rate. Vari-
ations in searcher attention as a function of caption attractiveness have been noted
in previous studies (e.g., Diaz et al. [2013]). Conversely, query click entropy appears
to help the model distinguish between more predictable behavior connected to navi-
gational intentions and less predictable behaviors for informational intent. The less
informative features involve more granular cursor movements (e.g., jerk, acceleration),
suggesting that in order to perform effectively our prefetching model only requires a
coarse model of search interaction behavior.

9.2. Mobile

We now report the results of the mobile prefetching, first spanning all queries and
then broken out by different query and searcher types. There is also an analysis of
the contributions made by the different features, as well as the battery consumption,
which is important in applying these models in a mobile setting.

9.2.1. All Queries. We present evaluation results over all queries in Figure 7(a). We
note here that, unlike precision-recall curves, for our curves, lower numbers are better,
and an ideal curve hugs the axes. Turning to our baselines, we see that prefetching
based on rank is very effective at reducing latency for many queries. However, because
this baseline aggressively prefetches for all queries, those cases where a result below
the first position was clicked will result in bandwidth fallout. The p(click,;) baseline
can provide some correction for highly ranked URLs with low historic clickthrough
rate. However, because these statistics are unavailable for many tail queries, the net
effect of this baseline is higher latency due to many decisions to not fetch any pages.
This behavior is amplified for our personalized baseline where the bandwidth fall-
out is reduced further but at an increase of latency. Our algorithm, which adaptively
models the probability of a searcher clicking a hyperlink, dominates all baselines for
all metrics. All differences are statistically significant using a Student’s paired ¢-test
(p < 0.05) except when comparing latency with p(clickseqrcher), With which it is statis-
tically indistinguishable. These results suggest that our model is indeed able to take
advantage of the dynamic features to improve prediction performance.
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Table VIII. Average Performance Broken Down
by Historic Searcher Scrolling Behavior. Shallow
Searchers Tend to Only Inspect the Top Seven
Results; Moderate Searchers Tend to Inspect the
Top 10 Results; and Deep Searchers Tend to Inspect
More Than 10 Results. Performance Is Averaged over
Operating Thresholds in Our Experiments. Lower
Values Are Better

Fallout Latency
Shallow 0.142 0.639
Medium 0.152 0.676
Deep 0.164 0.718

9.2.2. By Query Type. We examined the performance of our algorithm on queries
defined as navigational (i.e., with a click entropy less than or equal to one) and
informational (i.e., with a click entropy equaling of exceeding two) [Teevan et al. 2008];
same thresholds as used in the desktop setting. When inspecting the performance on
navigational queries (Figure 7(b)), we observe superior performance on both metrics
over the rank baseline (p < 0.05), comparable latency with superior bandwidth to the
plclicky;) baseline (p < 0.05), and comparable bandwidth with inferior latency to the
plclickseqreher) baseline (p < 0.05). These results demonstrate that, for navigational
queries, our algorithm may be less precise than p(clickseqrener) but performs more
robustly than other baselines for other operating points. The performance on infor-
mational queries (Figure 7(c)) reflects that of the full set of queries, with dominance
over all baselines except for statistical parity with p(clickseqrcner) for the latency
metric. A clearer dominance for informational queries reflects this class’s stronger
representation in the corpus (48.29%) compared to navigational queries (5.5%). This
may also suggest that behavioral data are more valuable when there is more ambiguity
regarding the searcher’s intent, as is likely with informational queries.

9.2.3. By Searcher Type. We were also interested in whether there were any differences
in model performance as a function of searcher type. One way to do this is to consider
how far down the result ranking people explore. This is relevant given the reliance
on the viewport for most of the features in the model. We used the data for searchers
with 10 or more impressions in the month (June 2015) prior to the time period used
for training and testing the prefetching model. For each searcher, we computed the
average maximum depth in the result lists that they considered. We hypothesized that
the model would perform better for searchers who did not explore deeply, since the
set of results assigned a high prefetching score from viewport-based features would
be smaller. We split searchers into three groups based on their typical examination
behavior: (i) shallow (11.82%), searchers who typically examined captions for results
up to rank 7; (i1) moderate (72.80%), searchers who typically examined captions for
results beyond rank 7 but less than rank 10; and (iii) deep (15.38%), searchers who
typically examined captions for results at rank 10 or beyond. The performance relative
to baselines is comparable to that found in Figure 7, so we suppress these plots for space
reasons. However, when inspecting the average performance over operating thresholds
(Table VIII), we notice that performance degrades as the searchers considered tend
to read deeper in the ranked list. One explanation for this is that examining more
result captions creates more options for prefetching (i.e., more results with a higher
prefetching score), leading to more noise in the predictions and resultant prefetching
decisions.

9.2.4. Feature Analysis. In order to understand the behavior of our model, we can ana-
lyze the contribution of individual features. In Table IX, we present the most and least
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Table IX. Feature Importance in Mobile Setting.
The Ten Most and Least Important Features
and Weights for Modeling Our Bandwidth-
adjusted Latency Targets. Higher Values Denote
Greater Evidential Weight. Weights Are Normalized
to Be in Unit Range with Respect to the Most
Important Feature (rank(x) from the Static Local Class)

Name Class Importance
rank(x) SL 1.0000
size(x) SL 0.5845
dur(x, v¢) DL 0.3540
y(x) SL 0.3415
height(x) SL 0.2495
avgPLT(x) SL 0.2201
sdPLT(x) SL 0.2130
H(g) SG 0.1916
freq(q) SG 0.1775
time(vy, vo) DG 0.1518
upscrolls(V;) DG 0.0268
width(v;) DG 0.0266
titleVis(x, v;) DL 0.0265
fracVis(v, X) DG 0.0210
frac(vs, x) DL 0.0104
frac(x, vg) DL 0.0102
scrolls(Vy) DG 0.0077
visArea(x, v;) DL 0.0066
width(x) SL 0.0026
vis(x, vg) DL 0.0000

important features used for predicting the link’s regression target. As can be seen,
the most important features are dominated by static local features. In particular, the
top-ranked feature, rank(x), indicates that this baseline provides a great deal of infor-
mation but, as seen in Figure 7, it is not enough alone to provide strong performance.
The only dynamic local feature appearing in the top features captures the duration of
the AOI in the viewport. It supports our hypothesis that visual attention is predictive
of a click. Interestingly, another important feature (height(x)) also reflects the attrac-
tiveness of an AOI. Other features are important for expressing the bandwidth of the
candidate result (size(x), avgPLT(x)), the query type (H(q), freq(g)), and the time in
the impression (time(v;, vg)). Many of the less-important features are either relatively
static in our dataset (e.g., width(x), width(v;)) or are correlated with higher ranked
features (e.g., vis(x, v;), visArea(x, v;)).

Looking at a feature’s contribution to regression performance overemphasizes the
accuracy of predicting the exact link grade. We can measure a feature’s more direct
impact on our performance metrics by conducting ablation experiments. In Figure 8,
we present the effect on performance resulting from holding out feature groups. The
features whose removal results in the most dramatic reduction in performance are
the Dynamic Global features. The reduction in performance is dramatic and clear,
supporting the hypothesis that behavioral information can improve the effectiveness
of click prediction. The removal of Dynamic Global features also results in a drop
in performance, although slightly less. The static features, on the other hand, seem
to provide weak contribution to the performance. These results may seem inconsis-
tent with Table IX, but it is important to note that the feature importance values
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Fig. 8. Performance curves illustrating latency and fallout for the model using all features, and when
removing each of the four feature groups in Table II. Removing the static global features has little impact
on the performance of the model; the performance curve for no static global mostly overlaps with the curve
for all features.

reflect the contribution to a regression objective, which is loosely related to our tar-
get evaluation metric(s). When we measure the performance more directly through
ablation experiments, the feature contribution for the target evaluation metric is
clearer.

9.2.5. Battery Consumption. One limitation of our work concerns the potential to impact
battery usage in mobile settings. Our model, albeit lightweight, both in features and
functional form, was evaluated under the assumption that the decision trees could
be evaluated with each viewport move. A possible concern with running the model
in production is the continual computation of the prefetching scores for the search
results. As implemented for this study, the prefetching model recomputes the scores
for each search result each time the position of the viewport updates. Analysis of the
test data shows that the median number of viewport sampling points per query im-
pression is 17, and there is a median of 208 requests to the model (to score a result)
in total per impression. Conservatively, we assume that running the model on each
result consumes 100% of the smartphone CPU. Recent work has shown that a 1GHz
smartphone CPU (a Google Nexus One device with a 1400mAh battery) running at
100% will consume about 0.08331Ah (microampere hours) per millisecond [Murmuria
et al. 2012]. Our experiments for this article (run on a desktop PC with an Intel Xeon
E5-1650 CPU running at 3.20GHz) showed that it takes 0.006ms to assign a prefetch-
ing score to a particular search result using our model. Even if it takes 1ms per result
in a mobile setting with a less powerful processor, we still expect the battery drain
to be minimal. For example, if we use the median numbers of requests (208), we will
consume 0.0173mAh per query (i.e., 208 x 0.08331Ah) or 0.001% of the 1400mAh
battery. Newer phones have longer battery lives (e.g., 1810mAh for the iPhone 6)
and are more efficient in how they use computational resources, so the percentage
could be even lower. Alternative strategies could be employed if needed, such as in-
corporating energy consumption into our objective [Wang et al. 2010], more carefully
downsampling decision points, or even offloading aspects of the computation to the
cloud.
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10. DISCUSSION AND IMPLICATIONS

We have introduced the search result prefetching challenge and real-time prefetching
methods to address it based on cursor movements (for desktop settings) and viewport
movements (for mobile settings). We have presented results demonstrating the use
of dynamic behavior information for adaptive click modeling, evaluated in a mobile
prefetching context. We show that this method performs more effectively than three
non-adaptive baselines, operating at comparable latencies. These gains are substantial
and could provide significant improvements to the user experience (reduced latency)
at the cost of a slight increase in bandwidth (increased bandwidth fallout).

Our findings showed that we can achieve strong prediction accuracy. As with other
studies [Buscher et al. 2012; Cutrell and Guan 2007b], we noted evidence of task ef-
fects (e.g., our models do better for navigational queries, where search behavior is more
predictable). We break out our findings by query type and searcher type (mobile set-
ting only). Variability in interactions between searchers is high [Buscher et al. 2012]
and differences in model performance per individual or cohort should be considered.
Whether a query is navigational or informational [Broder 2002] is likely to be highly
correlated with the probability of scrolling and hence could be useful to predict whether
prefetching is necessary. Navigational queries have a lower query click entropy, since
in the aggregate there is less variation in the results that are chosen. In contrast, the
query click entropy for informational queries is higher, since a number of different
results are likely to be selected. We capture this as a feature in the prefetching model
so it can be taken into consideration during learning and also used for post-hoc seg-
mentation of the analysis results. Query and/or searcher properties could also inform
decisions about the selective application of cursor-based prefetching.

Our analysis indicates that our performance is strongest for queries whose relevant
results are concentrated at the top of the ranking (i.e., navigational queries, shallow-
browsing searchers). This reflects the strength of the rank signal for these situations
but also points to an opportunity to improve modeling for other situations where the
searcher is interacting more with the SERP. We believe that improvements should come
both from more sophisticated modeling (including the adoption of temporal decays or
temporal cutoffs during feature generation), as well as from richer signals, perhaps
including proximity measurements from capacitive sensors on touch devices. Although
the focus in this article has been on prefetching within SERPs, there is a good oppor-
tunity to employ these methods for prefetching purposes within other settings such as
general website navigation. We also need to understand the utility of viewport-based
prefetching on other types of device such as tablet computers, where searchers may
still not be able to view the full SERP at any one time.

There are some limitations in this study. First, we consider prefetching only one
result per SERP. In the future, we plan to extend our method to handle prefetching
of multiple results during SERP examination. Second, in our evaluation we represent
cost as the action of prefetching a result. In practice, cost is more nuanced: There is
a variable cost associated with prefetching, depending on the nature of the prefetched
page (e.g., size, content types). Third, we have not fully explored the tradeoff between
client-side code optimization and its impact on prefetching performance. In the current
implementation, we optimize our client-side code to ensure no significant delay on
PLT for SERPs with the logging enabled. This includes lazy loading of the logging
code, enforcing mouse sampling (i.e., every 250ms or 8px of movement), and optimizing
our prediction latency in both feature extraction (i.e., constant time in the number of
cursor samples) and model execution (i.e., using decision trees, which can be turned
into heavily optimized binaries). However, we do not know whether these optimizations
are truly optimal and plan to further explore this in future work.
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It is worth noting that the task of search result prefetching shares some similari-
ties with the task of general search personalization, whether short term or long term
[Bennett et al. 2012]. In both sets of experiments, we used a state-of-the-art per-
sonalization baseline (e.g., personal navigation [Teevan et al. 2011]) that leverages
searchers historic behavior for the current query. The superior performance of the
cursor model to the personal navigation baseline in both cursor- and viewport-based
prefetching suggests that there are additional signals available in real-time engage-
ment with the SERP that add predictive value beyond the searchers past expe-
rience. Future work will include additional features and baselines, such as those
that leverage within-session behavior, for example, White et al. [2010], for prefetch-
ing decisions, as well as evaluating our models in terms of predicting multiple
clicks.

We also need to experiment with additional features and more sophisticated models
that explicitly consider the costs and benefits of past prefetching decisions, the temporal
sequencing of interactions or the intentionality of searcher interactions, for example,
the degree of focus that is observed in cursor movement trajectories [Pasqual and
Wobbrock 2014]. Features based on the historic distribution of clicks across the set
of top-ranked results, for the current query, current searcher, current searcher-query
pair, or independent of either, may also be useful. Previous work on click prediction
modeling (e.g., Richardson et al. [2007], Dupret and Piwowarski [2008], Chapelle and
Zhang [2009], Guo et al. [2009], and Wang et al. [2015Db]) is also relevant and could be
considered as an additional baseline, especially those that leverage past cursor signals
[Huang et al. 2012]. One important difference is that click prediction models are static,
based on aggregated historical data. Our prefetching model is dynamic, meaning that
it adapts to searcher activity on the current SERP and can be applied to any query
(not just those for which we have historic data, as is the case with traditional click
prediction models).

Although the use of historic data may be affected by cold start issues (where we need
sufficient data to compute reliable estimates), there may be some value in exploring
whether this information could be used as a prior. We do employ a baseline that ranks
search results by overall clickthrough rate and prefetches the result with the highest
rate. To minimize the number of features that require historic data, we do not integrate
the baseline features (clickthrough rate and personal navigation) into the full model,
but we plan to experiment with doing this in future work. There may also be particular
scenarios where static methods perform reasonably (e.g., navigational queries, as our
results suggest), and it is interesting to explore the selective application of static and
dynamic methods on a per-query basis or per-searcher basis. Further work is also
needed to understand the impact of applying these model enhancements on battery
consumption in practice—our initial explorations of suggest that the full impact in
mobile settings will be minimal, but usability tests are required to fully understand
the impact of search-result prefetching.

Looking ahead, the ability to prefetch visited resources has a number of implications.
People on slow network connections (e.g., in developing countries or remote locations in
developed countries) can benefit from faster landing-page loading, as would those en-
gaged in time-critical tasks [Mishra et al. 2014] where time is of the essence. Accurately
prefetching clicked results also allows search engines to offer enhanced interaction ca-
pabilities such as augmenting landing pages to better support transitions from SERPs
(e.g., clickable snippets [Feild et al. 2013]). More broadly, our prefetching methods could
help reduce latency in any Website, especially those with low traffic or large amounts of
dynamically generated content, both of which can hinder the application of data from
historic activity in prefetching decisions.
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11. CONCLUSIONS AND FUTURE WORK

We introduce the search result prefetching challenge and present methods for the dy-
namic prefetching of Web pages in response to SERP interaction behavior. Previous
models have focused on static prediction using historic data. We show that incorpo-
rating aspects of the SERP visual layout and dynamic on-SERP behavior, such as
cursor movement (on desktop) and viewport changing behavior (on mobile), can sub-
stantially improve the accuracy of real-time prefetching decisions and may improve
searcher efficiency—saving them a considerable amount of time per query. With in-
creasing reliance on mobile devices and per-request resource requirements, prefetch-
ing and other anticipatory techniques will become a critical component of responsive
user experiences. In future work, we will experiment with more sophisticated models
to better capture the temporal dynamics and personal nature of cursor movements
and viewport-based interactions. While in theory our technique may generalize beyond
SERPs, optimal performance may require task-specific models tailored to the specific
application scenario in which they are deployed. In addition, we will extend our anal-
ysis to a diverse range of non-SERP Web pages, refine our model target to incorporate
a more holistic set of resource desiderata, enrich our features to include new sensor
information as it becomes available (e.g., physiological data associated with searcher
interests [White and Ma 2017]), and extend our modeling methods to more directly
handle the time series of SERP interactions.
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