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ABSTRACT

Match-making systems refer to systems where users want
to meet other individuals to satisfy some underlying need.
Examples of match-making systems include dating services,
resume/job bulletin boards, community based question an-
swering, and consumer-to-consumer marketplaces. One fun-
damental component of a match-making system is the re-
trieval and ranking of candidate matches for a given user.
We present the first in-depth study of information retrieval
approaches applied to match-making systems. Specifically,
we focus on retrieval for a dating service. This domain of-
fers several unique problems not found in traditional infor-
mation retrieval tasks. These include two-sided relevance,
very subjective relevance, extremely few relevant matches,
and structured queries. We propose a machine learned rank-
ing function that makes use of features extracted from the
uniquely rich user profiles that consist of both structured
and unstructured attributes. An extensive evaluation car-
ried out using data gathered from a real online dating service
shows the benefits of our proposed methodology with respect
to traditional match-making baseline systems. Our analysis
also provides deep insights into the aspects of match-making
that are particularly important for producing highly relevant
matches.
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1. INTRODUCTION

A match-making system is a bulletin board where people
seek to meet other individuals in order to satisfy a particu-
lar need. Many match-making systems exist today includ-
ing dating services, resume/job bulletin boards, community-
based question answering systems, and consumer-to-consumer
marketplaces. Despite the popularity of such systems, rela-
tively little research has been conducted on the design of in-
formation retrieval models particularly suited for the match-
making task.

Typically, in a match-making system, each user is associ-
ated with a profile that includes general information about
the user. For example, in an online dating service, the pro-
file will include the user’s location, physical attributes (e.g.,
hair color), and political affiliation. On a job seeking site,
the profile may contain the job seeker’s education, years of
experience, and desired salary range. It is also common for
users of these systems to be able to define the attributes
they would like matches to satisfy. In match-making sys-
tems, these are often called target profiles. In information re-
trieval terminology, the target profile can be considered the
user’s information need, or query. A key aspect of match-
making systems is the ranking of candidate matches for a
given user. Different ranking functions are used to compute
the relevance of a match to a user. In this paper, we study
information retrieval-based ranking functions in this con-
text. To the best of our knowledge, this is the first in-depth
study of retrieval and ranking in a match-making system.

We use an online dating service as our main application.
One key observation is that in such systems, two-sided rel-
evance is a natural way of ranking matches. Intuitively,
matches that satisfy a given user’s target profile and whose
target profile is also satisfied by the given user own profile,
are preferred to matches whose target profile is not satisfied
by the given user. Consider the situation where user u is in-
terested in someone with attributes similar to those of user
v but v is not interested in someone with attributes similar
to those of user u. In this case, we argue that it is unde-
sirable for a retrieval system to rank v highly for u. There
are two reasons for this. First, we would like to avoid v be-
ing contacted by undesirable candidates. Second, we would
like to maximize the likelihood that w receives a reply. An-
other interesting aspect of the dating domain is subjective
relevance. Understanding the relevance of a pair of individ-
uals often requires a complex understanding of the intents of
both users. This makes a good match more difficult to de-
tect than document relevance and as a result is particularly
interesting from an information retrieval perspective.



This paper has three primary contributions. First, we for-
mulate the match-making task as an information retrieval
problem, whereupon user profiles are ranked with respect to
a given target profile using a machine learned ranking func-
tion. Second, we exploit the uniquely rich nature of user
profiles by extracting novel features based on their struc-
tured (e.g., age, income) and unstructured (e.g., description)
attributes. Finally, we undertake an extensive evaluation
using the data from a real-life online data site in order to
determine the level of interest between two users. Our ex-
periments also provide interesting insights into the types of
features and models that are the most useful for these types
of systems.

The rest of this paper is laid out as follows. First, Sec-
tion 2 provides an overview of previous work related to
match-making systems. Then, in Section 3 we formally
define the match-making problem from an information re-
trieval perspective. Section 4 discusses our proposed ma-
chine learned ranking framework. Sections 5 and 6 detail
our experimental methodology and present our experimental
evaluation, respectively. Finally, Sections 7 and 8 conclude
the paper with some discussions and directions for future
work.

2. RELATED WORK

There is a large body of research related to match-making
systems. Previous research has looked at match-making
from algorithmic, empirical, and even psychological perspec-
tives. We now highlight the previous research that is most
related to our study.

First, in mathematics there is the well-known stable mar-
riage problem. This problem aims to find a matching be-
tween all pairs of men and women such that it cannot be
the case that two potential partners both prefer each other
to their current partner [11]. When there is no distinction
between sets of users, this is the stable roommate problem
[13]. In combinatorics, the assignment problem refers to
matching tasks and agents so as to minimize some cost. In
our situation, we are not required to provide a hard match-
ing between users, but rather to rank possible partners for a
given user. This distinction is necessitated by the interactive
nature of online match-making systems.

There have also been a number of studies that have specif-
ically looked at dating systems. Hitsch et al. provide a very
detailed exploration into factors influencing match-making
in online dating systems [12]. Ranganath et al. explore how
language used during speed dating sessions can be used to
predict potential matches [24].

The combination of information retrieval and database ap-
proaches has been a fertile area of research recently. Such
research is related to our work because of the structured
nature of user profiles in match-making systems. Several
previous studies have investigated the use of free text re-
trieval for a structured database [22, 16]. An important
side effect of this is a ranking of records based on predicted
relevance. Lavrenko et al. proposed structured relevance
models for retrieving records from semi-structured data sets
that have missing field information[18]. Follow-up work by
Yi et al. used the structured relevance model for match-
ing resumes to recruiter queries [26]. Several other methods
have also been proposed for ranking database results [7, 6,
19] and for using explicit relevance feedback within database
systems [21, 25, 3]. Our approach is unique in that we take
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a feature-oriented, machine learning-based approach to the
problem that provides a great deal of flexibility and a strong
level of effectiveness.

Finally, the task of finding users (rather than documents)
that satisfy an information need has been addressed in a
variety of contexts. For example, in the TREC Enterprise
Track, the Expert Search task requires participants to rank
human experts with respect to specific topic [1]. Expert
Search situations occur when a user seeks an expert. How-
ever, the expert has no constraint over who contacts her.
One other difference is that users, both queriers and experts,
usually do not have semistructured profiles. Completely de-
centralized search algorithms for individuals have also been
studied in the context of social network analysis [17]. Fur-
thermore, the reviewer assignment problem also involves a
search over a set of users [14, 15]. While related, none of
these tasks exhibit the unique properties exhibited by the
online dating match-making task.

3. PROBLEM DEFINITION

We consider a retrieval scenario consisting of a set of users,
U, each of whom maintains a self-description and a query.
For a user u € U, a description, d,, consists of a set of
descriptive attributes. These attributes may be scalar, cate-
gorical, or free text. In this paper we consider the attributes
presented in Table 1. A query, g, consists of a set of con-
straints on candidate attribute values. In this paper, we
consider binary and scalar preferences. Binary constraints
indicate that a certain attribute be present in a candidate
record. Scalar constraints indicate that a scalar attribute be
a certain value or in a certain range.

For each user, u, we would like to rank all other users,
v € U — {u}, such that relevant matches occur above non-
relevant candidates.

4. RANKING FOR MATCH-MAKING SYS-
TEMS

We adopt a machine learning approach to learning our
ranking model [20]. Machine learned ranking models con-
sist of three parts: ranking features, relevance, and a rank-
ing function. Ranking features include all signals we observe
which may influence the scoring of a candidate match. In
our work, relevance refers to two users being an appropriate
match (e.g. they want to meet). Finally, the ranking func-
tion is a model of relevance given observable ranking fea-
tures. In this section, we be explain in some detail each of
these components as they relate to the match-making task.

4.1 Ranking Features

Given a user’s query, we are interested in ranking all other
users in decreasing order of two-way relevance. We consider
three types of features that we believe are predictive of rele-
vance. All of the features that we consider are based on the
match-making attributes listed in Table 1.

First, we extract a number of features from user profiles.
The user profiles represent information about a given user.
Profiles typically only specify a single value for a given at-
tribute rather than multiple values. This is due to the fact
that users have a single age, a single body type, a single
astrological sign, and so on. When ranking for a particular
user, u, the profile features of a candidate, v, can be thought
of as independent of user u and her query. We represent a



scalar categorical
age body type education hair color marital status religious activity star sign
height city employment humor style new user romantic style state
income country ethnicity interests occupation sexuality subscription status
num children desires more children eye color languages personality type smoking television viewer
num photos drinking featured profile living situation political bent social style zip code
gender religion

Table 1: Match-making Attributes. Users define a set of scalar and categorical attributes when building a
profile. In addition, users write a textual description of who they are and what they are looking for. User
queries define their ideal match in terms of constraints on scalar and categorical attributes.

E
candidate’s profile features with the notation d (330 fea-
tures), a querier’s profile features with 7 (330 features),

and the concatenation of both sets as d (660 features).
Our second set of features compares pairs of user pro-
files. We expect that match relevance will be influenced
when some profile features are very different (e.g. age). We
compare two profiles in a <Elautch by comparing the individual

profile features, 71 and d ;, as,
%
oi=di— di
(_
0; = 71 @ d;

We also implemented a simple score comparing the similar-
ity of pairs of users’ text self-description. For each user u,
we compute an f2-normalized tf.idf-based term vector, t,,
based on the self-description. Given a pair of users, the text
comparison is,

scalar features

binary features

5text - <tu7 tv)

Notice that, unlike our non-text feature comparison, the text
comparison is a similarity as opposed to a difference. This is
a minor issue since our modeling should be able to support
both flavors of features. We present a pair’s comparison
features with ¢ (331 features).

The final set of features represent attribute matches with
respect to a user’s query. These are the attributes that the
querier desires a potential match to have. For the scalar
attributes, users can specify a range of values of interest,
such as age between 18 and 35. These ranges are trans-
formed into two scalar features, one representing the min-
imum allowable value and the other representing the max-
imum. In our age example, this would correspond to the
features age_min = 18 and age_max = 35. With categor-
ical attributes, users specify one or more desirable values
for each attribute. These preferences are encoded as binary
features, one for each possible attribute value. For example,
if a user is interested in matches with red or blonde hair,
then the features hair_red and hair_blonde would be set to
true (1) and all other hair color features (e.g., hair_black)
would be set to false (0). Finally, users can specify the im-
portance of each attribute. The possible options are “must
match”, “nice to match”, and “any match”. Here, “must
match” attributes are those that the querier requires to be
satisfied for a match to be relevant, “nice to match” are
those attributes that the user would like to matches, but
does not require, and “any match” means the user would
be satisfied with any match for the given attribute. These
attribute importances are encoded as binary features (e.g.,
hair_must_match, hair_nice_to_match, and hair_any_match).
Our set of match features represent how well each attribute
matches between a user’s query and a candidate profile as
well as the attribute preferences of the querier. For exam-
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Figure 1: Graphical representation of the feature
sets we consider in our experiments.

ple, if a querier is interested in matches with a given hair
color, a match feature would encode whether a candidate’s
profile attribute satisfied that hair color as well as how im-
portant that attribute match was. Match features of this
form are extracted for all query attributes. We represent a
candidate’s match features with respect to a querier’s query
with the notation ? (156 features), a querier’s match fea-
tures with respect to the candidate’s query with 7 (156
features), and the concatenation of both sets as K7l (312
features).

Figure 1 provides a graphical depiction of the symbols
used to represent the different feature sets.

4.2 Relevance

Relevance in classic text retrieval tasks (e.g. TREC ad
hoc retrieval tasks) is often interpreted as topical relevance.
When interpreted this way, some degree of editorial assess-
ment of document relevance can be performed. In a match-
making system, queries are often constrained to a small set
of structured attributes. Therefore, asking an editor to de-
tect two-sided relevance can be a more time-consuming task;
the editor would need to determine the intent of a querier
given a structured query as well as a potentially rich profile
in both directions. Furthermore, in many cases, the rele-
vance of matches in a match-making system is more subjec-
tive than topical relevance. For example, there may be many
subtle attributes in the profile or query which are important
to the users but difficult to detect, even with query attribute
preferences. Because of this, accurately determining intent
and relevance may be impossible.

In order to address the difficulty with editorial relevance
assessment, a retrieval system can use behavioral informa-
tion of a running system to detect when users have found rel-



evant information. This approach is practiced in web search
when relevance engineers monitor user clickthrough patterns
[5, 23, 2]. Because salient behavioral information normally
occurs after a query is issued, we refer to these behavioral
signals as post-presentation signals. We are interested in
tuning ranking function parameters using queries with post-
presentation signals and generalizing to queries with no post-
presentation signals.

Match-making systems provide a unique set of post-presentation

relevance signals which can be used both for training and
evaluation. For example, if two users exchange phone num-
bers, they are probably a good match. On the other hand,
if one user’s message never receives a reply, then they were
probably a poor match. We present a complete list of our
post-presentation features in Table 2. Instead of committing
to a single feature to define relevance, we engineer a set of
high precision rules to define relevance and non-relevance for
a subset of matches. In our work, we consider as relevant
any matches where users exchanged contact information; we
consider as non-relevant any matches where at least one user
inspected the other’s profile but did not send a message as
well as any matches where one user sent a message but the
other did not reply. We refer to matches satisfying these
rules as ‘labeled’ matches.

We often have post-presentation features likely to corre-
late with relevance but whose exact relationship we are un-
sure of. In this situation, because we have a small set of
(automatically) labeled matches, we can train a model to
predict the labels of these unlabeled matches. Specifically,
we train a logistic regression model using the labeled set and
the unlabeled features in Table 2 (i.e. we only use those fea-
tures not used to infer relevance). We then use this model
to label the unlabeled set with predicted relevance. For a
match of users u and v, we use the notation P(R|u,v) to
refer to the predicted relevance. We force labeled users to
have P(R|u,v) € {0,1} based on the automatic labeling.

We want to be clear that our predicted relevance is a noisy
signal. For example, a successful interaction will not be de-
tected if messages are exchanged through an external proto-
col. Furthermore, even when messages are exchanged within
a system, it may be that the match is inappropriate. Mes-
saging is also subject to false negatives if contacts are not
initiated due a searcher’s perceived probability of response.
Nevertheless, we believe that basing relevance for a dating
system on behavioral information is both more reliable and
more efficient than editorial labeling.

4.3 Ranking Function

There are many different ways to define a ranking function
for the match-making task. In this work, we make use of a
machine learned ranking function based on gradient boosted
decision trees (GBDTs) [10]. We chose to use GBDTs for
several reasons. First, GBDTs can handle both numerical
and categorical features, which is a good fit for the types of
attributes found in match-making systems. Second, GBDT-
based ranking functions can be trained using a wide vari-
ety of relevance sources, including manual labels and click-
through data. Finally, these models have been shown to be
highly effective for learning ranking functions [27].

We now provide a basic overview of GBDTs. Given a
querier u and a candidate match v, we use GBDTs to com-
pute a relevance score for the pair. As the name implies,
GBDTs are boosted regression trees. Let fu. be the fea-

phone_exchange users both exchanged phone numbers

email exchange users both exchanged email addresses

regexp_match users both exchanged information

about meeting

number of exchanges between users

one user sent a message without a reply

difference in number of messages ex-

changed between users

duration of the message exchanges be-

tween users

the density of exchanges between the

first and last messages exchanged

skip one user saw the other’s profile and did
not send a message

num_view_exchanges number profile views exchanged be-

tween users

one user viewed another’s profile and

was not also viewed

difference in number of views ex-

changed between users

duration of views between users

the density of views between the first

and last messages exchanged

num_exchanges
message orphan
message_disparity

exchange_timespan

message_density

view orphan
view_disparity

view_timespan
view_density

Table 2: Post-Presentation Features. These features
measure the interactions between users after they
have seen a profile. Labeled features are bolded.
Regular expressions used to detect meeting were
taken from [12].

ture vector associated with the pair (u,v). A regression tree
defines a function T'(u, v) by partitioning the space of feature
values into disjoint regions R;, j = 1,2,...,J, which are as-
sociated with the terminal nodes of the tree. Each region
is assigned a value ¢; such that T'(u,v) = ¢; if fu,. € R;.
Thus, the output of the regression tree is computed as:

J
T(U,U;@) = Z¢jl(fu,v S Rj)a (1)

where © = {R;,$;}{, are parameters and I is the indica-
tor function. Given a pair of users, a single regression tree
will return a single real-valued score for that pair of users.
Precisely how the score is computed depends on the model
parameters R; and ¢;.

For a given loss function L these model parameters are
estimated by minimizing the the total loss:

ézargme%nz Z L(yu,vy(bj)‘ (2)

where y,,, = P(R|u,v) is the actual or predicted relevance
label for pair (u,v). Numerous heuristics exist for solving
this optimization problem, the details of which are beyond
the scope of this paper. In all of our experiments, we use
mean squared error as our loss.

A boosted regression tree is an aggregate of such trees,
each of which is computed in a sequence of stages. That is,

M
sm(u,v) = Z T(u,v;Om), (3)

where at each stage m, ©,, is estimated to fit the residuals



from stage m — 1 as follows:

@m = arg mln Z (Yu05 Sm—1(u,v) + pdj,,, )- (4)

(uv

where p is a free parameter known as the shrinkage rate.
Another important free parameter is the depth of the indi-
vidual regression trees 7'. If the depth of the trees is greater
than 1, then interactions between features are taken into
account.

Thus, given a training set consisting of pairs of users
and their associated relevance labels, we can learn a GBDT
model model {Gi}f\il, which is an ensemble of regression
trees. At test time, we use the learned model to score,
and subsequently rank, candidate matches v with respect
to queries u using sas(u,v).

Finally, the GBDT algorithm also provides what is called
feature importance [10]. The importance is computed by
keeping track of the reduction in the loss function at each
feature variable split and then computing the total reduc-
tion of loss function along each feature variable. The feature
importance can be useful for analyzing which features con-
tribute the most to the learned model.

S. METHODS AND MATERIALS

5.1 Data

We collected the profiles and queries for users of a per-
sonals system during the fall of 2009. We collected user
interaction data during this time period. After processing,
we had 6,420,563 matches with features from Table 2 de-
fined. We bootstrapped from labeled features to label un-
labeled matches. We kept only users who had at least one
relevant match with P(R) > 0. After this processing, our
data set consisted of 33,233 users (18,457 men and 14,776
women). We split our data into training, testing, and val-
idation sets by user. This prevents us from evaluating on
features observed in the training set. However, as a result,
some matches cannot be observed because users are in differ-
ent splits. Our data sets consisted of a training (7716 users,
17538 matches), validation (3697 users, 7543 matches), and
testing set (4836 users, 10636 matches). Users whose only
matches were broke by partitioning were removed from the
experiments.

Text comparison features used idf statistics from the col-
lection of user self-descriptions and the set of SMART stop-
words.

5.2 Evaluation

We can compute standard information retrieval metrics,
macro-averaged over users. That is, we iterate through all
users, considering each user a ‘querier’ and all other users
with labels or predictions ‘candidates’ to be ranked. Because
we use both relevance predictions, we evaluate using met-
rics supporting estimates of the probability of relevance. In
particular, we use the probabilistic versions of the following
metrics: average precision (AP), precision at k documents
(P@k), normalized discounted cumulative gain at rank k
(NDCGk), and expected reciprocal rank (ERR). These are
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defined by,
AP, = W ZPrec P(R|u,v)
POk = Ueszk P(R|u,v)
P(RIu,v;)
NDCCk = ;72 ey !
ERR = Z R'” vi) 1:[ P(R|u, v;))

The expected reciprocal rank metric was recently proposed
by Chapelle et al. [4] and is designed for tasks with prob-
abilistic relevance grades. The metric overcomes some of
the position bias issues associated NDCG by incorporating
a simple cascade-style user browsing model [8].

We define two sets of evaluation users as,

U ={ueU: e, P(Rlu,v) =1}
UF ={uci:3veld, P(Rlu,v) > 0}

U would only include those users who have at least one la-
beled relevant match. On the other hand, 4J% would only in-
clude those users who have at least one match with non-zero
predicted relevance. Because the reliability and robustness
of rank metrics is influenced by the number of candidates
being ranked, we only evaluate over users with five or more
matches with P(R|u,v) defined.

We will present results under two evaluation regimes: la-
beled and predicted. For the labeled evaluation, we use the
set of users in U as queriers and only the matches labeled
by our rules (i.e. P(R|u,v) € {0,1}). In this case, our met-
rics reduce to their standard, non-probabilistic form. For
the predicted evaluation, we use the set of users in U
queries and all matches with P(R|u,v) defined.

To identify statistically significant differences between two
ranking functions with respect to a given retrieval metric we
use a paired, one-tailed non-parametric bootstrap test [9].
We adopt this significance test because it allows us to sample
users non-uniformly. We sample a user u by max, P(R|u, v).
For U, this results in uniform sampling. For U7%, this re-
sults in sampling proportional to the most relevant match.
All significance tests are reported at the p < 0.05 level.

5.3 Training

We estimated GBDT models using different subsets and
combinations of features regressing against P(R|u, v). These

runs are labeled ¢ (match only), d (candidate profile only),
0 (profile similarity only), and T (two-way match only). We
also experiment with a runs which combine sets of features.
Because of unbalanced class distributions, we weighed in-
stances according to,

1 J—
T (R =11 P(Rlu,v) =1
1
Wuw = Wpimemol L (RIuv) =0
. 0< P(Rlu,v) <1

[Uo<P(RIu,v)<1l
so that we give a match weight according the source of its
label.

Gradient-boosted decision trees have several free parame-
ters: number of trees, number of nodes, and shrinkage. We



trained our decision trees using the training partition and
selected free model parameters using the validation set, ex-
ploring ranges of free parameter values,
number of nodes {1,2,3,4,5,6,7,8,9,10,25,50}

number of trees {5, 10, 50, 75,100, 250, 500, 1000}

shrinkage {0.01,0.025,0.05,0.075,0.10,0.15,0.25,0.50}

Although we train on the full set of matches, we validate
using the pool depth restriction we use in evaluation.

6. RESULTS

The results of our experimental evaluation are shown in
Table 3. We can make several observations about our runs
from these results. First, and perhaps most strikingly, we see

—
that using d features alone tends to perform very well across

metrics. Recall that the d features are query-independent,
and thus we are essentially learning nothing more than a
static ranking of the profiles. In fact, there are no statistical

differences between the strongest runs and d .

Second, features comparing both users, J, although effec-
tive, do not yield significant improvements over the query
independent ranking (and actually results in a statistically
significant drop for P@5 under both evaluation sets).

Using only match features, both one-way and two-way, re-
sults in the worst performance across metrics. These drops
in performance are statistically significant across metrics
compared to the next best run, J, except P@Q5 and PQ10
for the labeled relevance set and P@5 for the predicted rel-
evance set. When we compare and ?} runs, we observe
statistically significant gains for four of the eight metrics for
the labeled relevance set (AP, ERR, NDCG5, NDCG10) and
four of the eight metrics for the predicted relevance set (AP,
ERR, NDCG5, NDCG10).

We note that, when combining § and ? features, we see
improvements compared to only using é or 7. Compared to
using only ¢ features, statistically significant improvements
are isolated to one metric for labeled relevance set (P@5)
and three metrics for the predicted relevance set (NDCGS5,
NDCG10, P@10). All improvements are statistically signif-
icant compared to using the ‘g’ alone.

Finally, combining d and ‘¢’ provides strong performance,
although not as strong as our other combination (5?) Fur-
thermore, this run degrades performance compared to using

only d features, although these degradations are never sta-
tistically significant.

In Table 4, we show the top fifteen features, as measure
by their feature importance as described in Section 4.3, for
each run we evaluated. As the results indicate, the most
important features across runs tend to be those associated
with distance, age, height, the profile having been featured,
and the user’s subscription status. When considering match
features (7, ?), we notice the selection of both match val-
ues as well as constraints, suggesting that the algorithm is
indeed taking advantage of the users’ preferences, not just
the match value. When we consider two-way match fea-
tures, match features in both directions are selected, indi-
cating that both users’ match preferences are important for
ranking. Finally, we note that the text similarity measure,
when available, often ranks highly in terms of feature im-
portance, suggesting that non-relational attributes also play
an important role.
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7. DISCUSSION

We were surprised that that model trained only using g
features resulted in such strong performance. Does this im-
ply that attributes specific to the querier are irrelevant?
Most likely not. There could be several other reasons for
this. For example, the expressiveness of the query repre-
sentation may be limited. Even though users are provided
with the ability to indicate the importance of specific traits
and their values, the importance value is still discrete; these
importances are unlikely to be as expressive as real-valued
weights applied in the machine learned model. Although it
may seem that the attributes in Table 1 are not informa-
tive enough to rank candidates, this hypothesis is unlikely
to be supported since the d features are constrained to the
same representation. Finally, it might be that the user is
just not agile enough with the query interface to produce
effective queries. This suggests that alternative interfaces or
more intuitive features might be better at eliciting effective
queries from the users for this particular task.

The strength of the g features may also be the result of
our data gathering process. We only experiment with pairs
of users who have interaction features defined, in the form
of profile views or message exchanges. Users may become
cognizant of how their own attributes compare to the pref-
erences associated with the profiles they view. This is espe-
cially true since profile displays include information about
the user’s query. There is likely a self-censoring process in-
volved whereby a user only sends a message if they notice
that they match the profile’s preferences.

The conjunctions of features noticeably did not provide
statistically significant improvements for many metrics. This
result likely follows from the number of features considered
in the aggregated set compared to the training set size. For

example, The combination of 7 and ? features results
in a vector of 1614 features. With only 17,538 training in-
stances, it is unlikely that the model had enough data to
learn an accurate predictor, thereby degrading ranking ef-
fectiveness. We believe that, with more training data, our
combined runs would significantly outperform the simpler
baselines.

In addition to physical attributes related to age and height,
those attributes with the strongest predictive power were
distance, subscription status, and whether a user’s profile
had been featured. While the distance constraint is under-
standable to many (e.g. individuals are looking for matches
within their city or state), the others require some explana-
tion. The subscription status of a user indicates an invest-
ment in the search process. If a user has paid money for
extra site features, they may be more engaged in the system
and willing to look for matches. On the other hand, when
the site decides to feature a profile, this raises the credibil-
ity of the user, making them more attractive to other users.
As a result, we expect these users to be more successful at
finding matches.

The importance of the text similarity feature when in
conjunction with the match features, suggests that there
is information present in the text description that can be
exploited for ranking. Text provides user an unconstrained
field to discuss arbitrary interests. The ability to detect sim-
ilarity in these interests using a very simple text similarity
measure means that eliciting text from users and exploiting
it for ranking is a good avenue for future work.



labeled relevance predicted relevance

a5 g ‘g o9 dg| d s 7§ &7 47
AP 0.453 0.439 0.368 0.398 0.456 0.445 | 0.485 0.484 0.428 0.454 0.497 0.494

NDCG1  0.248 0.269 0.186 0.198 0.271 0.267 | 0.346 0.366 0.287 0.317 0.380 0.367
NDCG5  0.513 0.478 0.409 0.437 0.505 0.500 | 0.576 0.556 0.501 0.527 0.575 0.580
NDCG10 0.573 0.555 0.497 0.520 0.571 0.565 | 0.649 0.643 0.598 0.619 0.659 0.656

pa1l 0.248 0.269 0.186 0.198 0.271 0.267 | 0.360 0.380 0.304 0.334 0.395 0.381
P@5 0.207 0.188 0.176 0.178 0.200 0.201 | 0.326 0.311 0.298 0.303 0.318 0.326
P@10 0.129 0.127 0.124 0.123 0.129 0.129 | 0.226 0.223 0.221 0.219 0.227 0.226
ERR 0.481 0.464 0.392 0.420 0482 0475 | 0.582 0.577 0.517 0.552 0.595 0.589

Table 3: Results for match-making ranking using metrics defined with the high precision subset of labels
as well as predicted relevance. Subsets of features include query-independent profile ranking (7), profile
similarity (), one-way match (?), and two-way match (?) Statistical significance between pairs of runs for
a metric are described in the text.

‘4 5 < 7 g a7
featured subscription status distance distance (¢) text (9) distance (¢)
age distance max age distance (‘7) distance (‘7) distance (‘7)
height height max height* max age (7) age (9) age (g)
living arrangement  living arrangement more kids max age () distance () age (7)
subscription status featured min height® max age® (¢) subscription status (§) max age ()
religious activity religious activity =~ max height® ethnicity (7) height () max age (‘7)
employment gender ethnicity max height* (7)) featured () featured ((E)
num photos eye color ethnicity® min height (7) new user (4) featured (7)
religion humor languages* ethnicity* (7) gender (§) subscription status (g)
interests activity has kids body type (7) num photos (§) subscription status (d)
new user text body type  max height® () eye color (4) height (d)
smoking new user max age® max height® () max age () height (d)
activity educationt™  max height* (7) religious activity (9) max height*
more kids education® more kids () max age (7) new user (d
occupation zip body type™ (7) featured () max height* (g)

Table 4: Top ten features for each of our feature combinations. Superscripts indicate query constraint features
(o: ‘any’; +: ‘nice to have’; x: ‘must have’). Symbols in parentheses indicate the source of the feature. In all
runs except 6, more than fifteen features were selected by the algorithm.
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8. CONCLUSIONS

We have presented the problem of ranking for match-
making systems. We motivated this problem by its ubiquity
as well as its compelling differences with many standard re-
trieval scenarios. Specifically, we believe that the notions of
two-way relevance, its detection, and usefulness for ranking
are all very different from many search problems.

We found that, for our problem setting, query-independent
ranking provided a simple and effective method for ranking
candidate matches. This greatly simplifies system design
since ranking can be done globally, with some simple filter-
ing for important match constraints (e.g. distance, age). At
the same time, we believe that users’ queries, as they are
often revealed to all users in a system may provide a self-
censoring which in turn results in a higher quality list of
candidates. Furthermore, we believe that such systems may
benefit from different query interfaces more appropriate for
the task. This might include the option of users to issue
free text queries, as text similarity appeared to be a strong
predictor of relevance when combined with match features.

There is a wide range of research problems associated
with retrieval in match-making systems. In the area of rel-
evance, future work includes discovering additional implicit
relevance signals. More interestingly, we can design system
modules which, as a side effect, detect relevance with high
accuracy. In the area of features, future work includes the
refinement of features we propose and development of new
attributes found to be highly correlated with relevance. For
example, new structured attributes might be detected by in-
specting text description term matches which are correlated
with relevance. Finally, in the area of ranking, it may be
possible to develop improved loss functions that take into
account the unique notion of two-way relevance.
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