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Abstract. As online music platforms continue to grow, music recom-
mender systems play a vital role in helping users navigate and discover
content within their vast musical databases. At odds with this larger
goal, is the presence of popularity bias, which causes algorithmic systems
to favor mainstream content over, potentially more relevant, but niche
items. In this work we explore the intrinsic relationship between music
discovery and popularity bias through the lens of individual fairness.
We propose a domain-aware, individual fairness-based approach which
addresses popularity bias in graph neural network based recommender
systems. Our approach uses individual fairness to reflect a ground truth
listening experience, i.e., if two songs sound similar, this similarity should
be reflected in their representations. In doing so, we facilitate meaning-
ful music discovery that is resistant to popularity bias and grounded in
the music domain. We apply our BOOST methodology to two discovery
based tasks, performing recommendations at both the playlist level and
user level. Then, we ground our evaluation in the cold start setting, show-
ing that our approach outperforms existing fairness benchmarks in both
performance and recommendation of lesser-known content. Finally, our
analysis makes the case for the importance of domain-awareness when
mitigating popularity bias in music recommendation.

Keywords: Recommendation * Algorithmic Fairness * Graph Neural
Networks

1 Introduction

The proliferation of market activity on digital platforms has acted as a catalyst
for research in recommendation, search, and information retrieval [33]. At its
core, the goal of this research is to design systems which can facilitate users’
exploration of an extensive item catalogue: be it in the domain of journalism
[60], films [29], fashion [20], music [38,52,53], or otherwise. Within this larger
goal of recommendation, each domain comes with its own specifics that dif-
ferentiate it from other settings [9,25,46]. Particular to the music streaming
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domain, an extensive body of work has explored the importance of discovery,
exploration, and novelty in the larger goal of performing music recommendation
[17,23,27,39,44,49]. Broadly, discovery can be considered the ability of a curato-
rial system to expose users to relevant content that they would not have manually
discovered themselves [27,32,49]. And, most significantly, the importance of this
subtask is substantiated by numerous works indicating that music discovery is
a crucial factor for maintaining and improving customer loyalty [39,44,49].

Recent work in this domain has begun to uncover an inverse relationship
between novelty, one of the keys to discovery, and the notion of popularity bias
[36,60]. Within the broader recommendation community, popularity bias has
long been an important topic of research. This phenomenon manifests itself when
algorithmic reliance on pre-existing data causes new, or less well known items,
to be disregarded in favor of previously popular items [3,12,16,35,47,57]. And,
particularly in the context of discovery, where purpose of a user’s engagement
with algorithmic curation hinges on exposure to musical items which they would
not have already been familiar with, the presence of popularity bias can clearly
hinder a system’s ability to serve this need. In this work, we apply our method-
ology to graph neural network (GNN) based recommender systems [26,61]. In
the graph space, popularity is deeply interlaced with the degree of a node, or the
number of edges that connect a node and to others in the graph. This is because
the innate process of representation learning is affected by the number of neigh-
bors a node has [37]. And, thus, a node’s centrality can dictate the quality of its
learned representation. This suggests that duplicating the feature information of
an extremely popular song, creating a new song using these duplicate features,
and randomly placing it once at the edge of a graph, will significantly impact
its learned representation, even if everything about the song remains ezxactly
the same. Currently, the state of the art approaches to mitigating popularity
bias, do so from a domain agnostic approach [2,42,51,59,64]. This methodology
has two important drawbacks. First, it often requires a method to rely on the
presence of sensitive attributes in order to define popularity, which are often
unavailable. Second, such an approach is unable to recognize musical similarities
among items, thus increasing the complexity of disentangling popularity bias in
learned representation.

In this work, we propose a domain aware, individual fairness based
approach for facilitating engaging music discovery. Unlike domain-agnostic
approaches, our method does not rely on sensitive attributes to define popular-
ity. Instead, we design an intuitive, simple framework that uses music features
to fine-tune item representations such that they are reflective of information
that is, in essence, a ground truth to the listening experience: two songs that
sound similar should, at least somewhat, reflect this similarity in their learned
representations. In order to facilitate the domain awareness of our approach we
generate nuanced multi-modal track features, extensively augmenting two pub-
licly available datasets. Using these novel feature sets, we show the importance
of integrating musical similarity into a debiasing technique and show the effects
of our method at learning expressive representations of items that are robust to
the effects of popularity bias in the graph setting. Grounding our approach in
the musical domain empowers us to leverage a ranking-based individual fairness
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definition and extend it to the bipartite graph setting. We compare our indi-
vidual fairness-based method with three other methods which are grounded in
other canonical fairness notions and are not domain-aware. Through a series of
empirical results, we show that our fairness framework enables us to outperform
a series of accepted fairness benchmarks in both performance and recommenda-
tion of lesser known content on two important music recommendation tasks. In
summary, the contributions of this paper are the following:

1. Problem Setting: we define the task of music discovery through the lens of
domain-aware individual fairness, showing the intrinsic connections between
individual fairness, musical similarity, popularity bias, and music discovery.

2. Dataset Design: we extensively augment two classic music recommendation
datasets to generate a set of nuanced multi-modal track features.

3. Method: (1) we provide a novel technical formulation of popularity bias (2)
design a domain-aware ranking based individual fairness approach to miti-
gating popularity bias in graph-based recommendation.’

2 Related Work

2.1 Popularity Bias in Recommendation

Most broadly, popularity bias refers to a disparity between the treatment of popu-
lar and unpopular items at the hands of a recommender system. As such, this term
is loosely tied to a collection of complementary terms including exposure bias [19],
superstar economics [5], long tail recommendation [42], the Matthew effect [45],
and aggregate diversity [4,13]. There have been several different approaches to
formulating popularity through some quantitative definition. One body of work
defines popularity with respect to individual items’ visibility [19,42,65]. Another
group of approaches attempts to simplify this process by applying some form of
binning to the raw appearance values. Most notably, the long tail model [12,22,
28,47,62] has risen to prominence as a popularity definition. Due to the exponen-
tial decay in item interactions, the first 20% of items, called short head, take up
a vast majority of the user interactions and the remaining 80%, or long tail and
distant tail, have, even in aggregate, significantly fewer interactions.

In addition to providing formal definitions, a large body of work has
formed around analyzing and mitigating popularity bias in recommender systems
[10,16,34,35]. These mitigation strategies are often based on the instrumenta-
tion of various canonical fairness notions such as group fairness [2,7,51,55,64],
counterfactual fairness [59,65,67], or individual fairness [14,58]. We con-
trast our work with previous individual fairness approaches in our use of the
music feature space as a form of domain expertise in definition of item-item sim-
ilarity. We argue that without this “anchoring” an individual fairness method
that uses the output of a recommender model, whether it be in learned rep-
resentation [58] or the relevance score [14], is already influenced by an item’s

' Github repository https://github.com/Rsalganik1123/Domain_Aware_ECIR2024.
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popularity. Finally, in addition to the classical formulation of popularity bias, a
group of works have explored the connection between popularity bias and nov-
elty [41,66,68] where various metrics are designed to evaluate the novelty of a
recommended list. We see our work as complementary to the exploration in this
area however, we differentiate our problem formulation because while novelty is
an important aspect of discovery, without domain awareness novelty alone does
not account for musical similarity - a critical aspect of the discovery setting.

2.2 GNNs in Recommendation

In recent years various graph neural network (GNN) architectures have been
proposed for the recommendation domain [61]. For brevity, we will focus only
on the two methods that are used as the backbone recommenders to the fairness
mitigation techniques discussed later in this paper and refer readers to the follow-
ing surveys [26,61] for recent innovations in this domain. In particular, PinSage
[63] is an industry solution to graph-based recommendation. PinSage trains on
a randomly sampled subset of the graph. In order to construct neighborhoods,
PinSage uses k random walks to select the top m most relevant neighbors to
use as the neighbor set. However, it is important to note that PinSage learns
representations of items but not users. Meanwhile, Light GCN (LGCN) [31], is
a method that learns both user and item embeddings simultaneously. Since its
proposal in 2020, it is still considered state of the art.

3 Methodology

In this section we detail the dataset augmentation procedure and architecture
of our domain-aware, individually fair music recommendation system. First,
we introduce our datasets in Sect.3.1. Then, following the problem setting in
Sect. 3.2, we reformulate popularity bias in Sect. 3.3 and introduce our domain-
aware, individually fair music recommender system in Sect. 3.4.

3.1 Dataset Augmentation Procedure

We augment both of our datasets to include a rich set of features scraped from
Spotify API [1]. The details of the augmented features are as follows.

1. Sonic features. Spotify has a series of 9 proprietary features which are used
to define the audio elements associated with a track. They are danceabil-
ity, enerqy, loudness, speechiness, acousticness, instrumentalness, liveness,
valence, and tempo. Each of these features is a continuous scalar value. We
apply 10 leveled binning to the values.

2. Genre features. We identify the primary artist associated with each collect
all the genre tags associated with them.

3. Track Name features. For each song in the dataset, we extract the song
title and pass it through a pre-trained language transformer model, BERT
[18], into an embedding of dimension 512.
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4. Image features. For each song in the dataset we extract the associated
album artwork. We use this image to generate ResNet50 [30] embeddings of
dimension 1024.

3.2 Problem Setting

The task of performing recommendation can be seen as link prediction an undi-
rected bipartite graph. We denote such undirected bipartite graph as G = (V, E).
The set V = T'U P consists of a set containing song (or track) nodes, T, and
playlist (or user) nodes, P (or U). The edge set E are defined between a playlist
pr (or user uy) and a song t; if ¢; is contained in p; (or listened to by wy).
Following this setting, our goal (link prediction) is to predict whether any two
song nodes t;,t; € T' share a common parent playlist p.

3.3 Reformulating Popularity Bias
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Fig. 1. Binning procedure for popularity definition. We contrast our popularity defini-
tion with the classic long tail model [42], showing that our proposed method empowers
for a granular visualization of popularity between various item groups.

Defining Popularity. As mentioned in Sect.2.1, there is no true consensus
within the community on how to define popularity. Here, we present a method-
ology which we believe allows for both the granularity and expressiveness nec-
essary to highlight differences among various mitigation methods. Broadly, our
method consists of important steps (1) logarithmic smoothing and (2) binning.
In doing so, we combine the best of each methodology. Applying a logarithmic
transformation to the raw values, solves the scaling issues that are caused by
the extremes of the long-tail distribution. Meanwhile, binning concisely high-
lights large scale patterns. And, in contrast to previous methods using binning
[2,19,51], logarithmic smoothing guarantees that none of the bins are left empty.
Please note that we select 10 bins based on the distribution of the datasets and
the formulation of our BOOST methodology (see Sect. 3.4) but this number can
be tuned to the granularity needs.

Our popularity measure is achieved by first, counting the number of times each
song track, ¢; appears within playlist (or user) training interactions such that for
each t;, a;, = | {pi it € pi} |. Then, we apply the base 10 logarithmic smoothing
to these values such that for each t;, pop,, = logq (at, ). Finally, we apply binning
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onto these values to split them into 10 groups such that for each ¢;, pop_bin (¢;) €
{0,...,9} where bin 9 has a higher popularity value than bin 0. The visualization
of this binning procedure and its comparison with the long tail method can be
seen in Fig. 1. As demonstrated by our visualizations, transforming the raw values
into the logarithmic space shows that the bins are filled in relatively even intervals,
where, as the popularity increases, so does the number of songs included in a bin.
We showcase the gains that our method has over the canonical long tail model
in Fig. 1 where we compare the positioning of our binning methodology with the
classic long tail model. Furthermore, as we later show Figs. 3 and 4 our formulation
of popularity is able to elucidate crucial differences among both the datasets and
baseline model performances on these datasets.

Popularity Bias and Music Discovery. In addition we formalize the inverse
relationship between music discovery and popularity bias. For each song track,
t; € T, we generate a counterfactual example song, t; € T, where everything
about the features is exactly the same and the only difference is that ¢; has a high
degree while ¢; has a degree of one. We calculate the distance between an original
song node, t; and its counterfactual duplicate, t; . A system with high potential
for musical discovery will have a low distance between the songs, showing a low
popularity bias and an understanding of musical similarity. We will return to this
formulation in Sect. 5.1, showing that a node’s placement and degree in the graph
can exacerbate the presence of popularity bias, reflecting itself in the node’s learned
representation.

3.4 Mitigating Popularity Bias Through Individual Fairness

Ranking-Based Individual Fairness. REDRESS is an individual fairness
framework proposed by Dong et al. [21] for learning fair representations in single
node graphs. Our work extends this framework to the bipartite recommendation
setting and integrates it into our popularity bias mitigation approach. Here, the
crucial formulation of individual fairness requires that nodes which were similar
in their initial feature space should remain similar in their learned representation
embeddings [24]. More concretely, for each song node, t;, and node pair t,,t, in
a graph G, similarity is defined on the basis of the pairwise cosine similarity met-
ric, s(+, ), as applied to either a feature X[v] € ?ﬁd, or learned embedding set,
Z[v] € R™. Applying this procedure in a pairwise fashion produces two similar-
ity matrices. The first, or aprior: similarity, S, in which similarity is calculated on
input features and the second, or learned similarity, Sz, in which similarity is cal-
culated between learned embeddings generated by some GNN model, M. Drawing
on principles from learn to rank [8], each entry in these similarity matrices is re-cast
as the probability that node ¢; is more similar to node ¢,, than ¢, and transformed

into an apriori probability tensor, Pg € ,‘RlTlxlTleTl, and a learned probability ten-
sor, Py € RITHITIXIT] Bor more details on the calculations of these probabilities,

please see the original formulation in [21]. Having defined these two probability
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tensors, each individual node the fairness loss, L;, ; (t;), is the canonical cross
entropy loss aggregated over all nodes ¢; € V as:

7| |71 7]

Lfairncss = Z Z Z Ltu,tl, (t’L) (1)
iU v

Individually Fair Music Discovery. The original formulation of individual
fairness requires some form of domain expertise [24] to determine how similar (or
dis-similar) two items are. For the music discovery domain, we use music features
as the basis for calculating cosine similarity. Thus, our apriori similarity, Sg, is
defined as the cosine similarity between the musical features, X[v] € %lTlxg, asso-
ciated with song nodes. Meanwhile, our learned similarity contains the song-level
embeddings, S, € iRlTlxm, learned by PinSage. In this way, REDRESS acts as
a regularizer that ensures that rank-based similarity between songs is preserved
between the input and embedding space. Thus, our similarity notion is domain-
aware and grounded in the essence of musical experiences: acoustics.

Bringing Popularity Into Individual Fairness. The REDRESS framework
does not explicitly encode any attributes of popularity in its training regimen. To
extend this technique for explicitly counteracting popularity bias, we define the
BOOST technique which is used to further increase the penalty on misrepresenta-
tion of items that come from diverse popularity categories. We define 10 popularity
bins by applying a logarithmic transformation and binning the degrees of a node 4
(i.e., deg;) such that pop_bin(i) = bin (log,q (deg;)). Given the learned represen-

tation matrix, S, € 9‘{|T|X|T|7 we define another matrix B in which
B, = |pop-bin(i) — pop_bin(j)| (2)

Then, in the BOOST loss formulation, in place of S we use S'Z =S, +B.

Objective Function. The training objective is:

Liotal = Lutility + Y Ltairness (3)

where vy is a scalable hyperparameter which controls the focus given to fairness
used to balance between utility (Lyity) and fairness (Leairmess). FOr Lygility, we
apply the aforementioned focal loss [40]. And Leairness 18 Eq. 1 defined above.

Generating Recommendations. Notably, the PinSage architecture is only
designed to learn embeddings for songs, not for playlists (or users). Thus we design
our own procedure for generating playlist (or user) embeddings using the learned
song embeddings. For each playlist (or user) node, p;, we have a set of songs,
T(p;) = {t; € T,ep, 1, € E}, which are contained in a playlist. For a test playlist,
Pt we split the associated track set into two groups: T'(t,) = {t; : t; € w;} =
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tseed Y tholdout SUuch that t...q is a set of k songs that are used to generate the
playlist representation and tj,,;40,¢ are masked for evaluation. Thus, in order to
generate a playlist (or user) embedding we define:

Zp, = MEAN({ztj 2t € tseeal)
where the 2, € R4 are the learned representations of dimension d. Having
learned these playlist representations, we find the k-nearest neighbouring tracks
and consider these the recommendations (Table 1).

4 Experimental Settings

Table 1. Dataset statistics

Dataset | Recommendation Setting Feedback Type | #Users/Playlists | #Songs | #Artists
MPD Automatic Playlist Continuation | Explicit 11,100 183,408 | 37,509
LFM Weekly Discovery Implicit 10,267 890,568 | 100,638

Recommendation Scenario. We evaluate our method on two important music
discovery tasks: Automatic Playlist Continuation [54] and Weekly Discovery [56].
Automatic Playlist Continuation requires the recommender system to perform
next k recommendation on a user generated playlist. Meanwhile, Weekly Discov-
ery, involves the creation of a new playlist based on a user’s aggregated listening
habits. Following the paradigm of the cold start setting [54], we extract splits on
the playlist level by randomly sampling without replacement such that each split
trains on a distinct subset of the playlist pool.

Datasets. Asintroduced in Sect. 3.1, we extensively augment two publicly avail-
able datasets, LastFM (LFM) [43] and the Million Playlist Dataset (MPD) [15],
with rich multi-modal track-level feature sets. For more details please refer back
to Sect. 3.1.

Music Performance Metrics. We design a series of musical evaluation metrics
to complement classic utility measures (see Table 2 for further detail). For exam-
ple, we use Artist Recall to evaluate the correct identification of artists in a rec-
ommendation pool, an auxiliary task in music recommendation [38]. In addition,
we design Flow to capture the musical cohesiveness of the recommended songs in
a playlist [6].

Fairness Metrics. In order to assess the debiasing techniques used to promote
of long tail songs, we follow common evaluation practices in the fairness literature
[2,12,48]. Percentage metrics capture the ratio of niche to popular content that
is being recommended on a playlist (or user) level. Meanwhile, coverage looks at
the aggregate sets of niche songs and artists over all recommendations (see 2 for
further detail) (Table 2).
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Table 2. Music and fairness performance metrics. We define a ground truth set, G, and
a recommended set, R, we define the set of unique artists in a playlist as A(.) and the
d-dimensional musical feature matrix associated with the tracks of a playlist as F'(.) €
9{|4|><ri'

Metric Category | Formulation
Artist Recall@100 Music ﬁ Y oeprn, rlc)\ |A(G,) N A(R,)|
Flow@100 Music ﬁ Y pepro., COS(E(:), F(t;)) ¥ (ti,t;) € R,

Artist Diversity (per playlist) | Fairness @ ZpePf,m, mHA(RP)H

Percentage of Long Tail Items | Fairness m ZPEPtest ﬁ|{ti 1t € Rynt; € LTY|

Coverage over Long Tail Items | Fairness ﬁ“tl 1t; € R(t; € |LT|}

Coverage over Artists Fairness lT}‘Harid(ti) 1t; € R|}

Baselines. We use two naive baselines, first using bare features in place of learned
representations (Features) and, second, recommending the top 100 most popular
tracks (MostPop). Then, we evaluate against three state of the art bias mitiga-
tion techniques: a group fairness-based, in processing method (ZeroSum [51]),
a causality-based in-processing method (MACR [59]), and a re-ranking, post-
processing method (xQuAD [2]).

Parameter Settings and Reproducibility. Each of the baseline methods was
tested with learning rates ~ (0.01,0.0001), embedding sizes of [ 10, 24, 64, 128] and
batch sizes of [256, 512, 1024]. For the values in the tables below, each stochastic
method was run 5 times and averaged. All details and further hyperparameter set-
tings can be found on our Github repository.

5 Results

5.1 RQ1: How Does Incorporating Individual Fairness Improve
the Mitigation of Popularity Bias and Facilitate Music Discovery?

To showcase the performance of our algorithm in the discovery setting and moti-
vate the need for individual fairness in the mitigation of popularity bias, we draw
on the definition of music discovery presented in Sect. 3.3 and evaluate the effects
of popularity bias on learned representations of songs. Simulating a situation of
maximal popularity bias, we consider the hypothetical example in which extremely
popular songs are reversed to become unpopular and measure the effect on their
learned representations. More formally, for each song track, t; € T, we generate
a counterfactual example song, t; € Ty, where everything about the features is
ezactly the same and the only difference is that t; appears in many playlists while ¢;
appears only once. We augment the original dataset to include these counterfactual
songs, Taya = T U Tor. Then, we use five methods to learn the item level repre-
sentations: one baseline recommender, PinSage, and four bias mitigation methods,
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ZeroSum [51], MACR [59], REDRESS, and BOOST. We apply 2-dimensional PCA
to each embedding set and analyze the Euclidean distance between the centroids
of original track embeddings, T, and counterfactual track embeddings, T . Due
to the size of our dataset, we run this metric using the 100 most popular tracks
in the MPD dataset and leave further exploration of this phenomenon for future
work.

PINnSAGE: Distance:0.172 ZeroSum: Distance:0.143 MACR: Distance:0.055
15| - original 0. A 0.8
+  counterfactual 0.6 ¢ . 0.6

0.4 0.4

0.2 02

0.0 .

-0.2
-0.2

0.4 2
-0.4

-0.6 /
-10 -05 00 05 10 —0/50 —0.25 0.00 0.25 050 0.75 8575 —050 025 0.00 035 050 075
REDRESS: Distance:0.010 BOOST: Distance:0.010

Fig. 2. Simulating Popularity Bias: We select 100 of the most popular songs in MPD
and [54], duplicate features, and give them a degree of 1. We find that REDRESS and
BOOST have the lowest distance between the originals and their unpopular duplicates,
showing the least amount of popularity bias.

As shown in Fig. 2, we find that all fairness interventions decrease the distance
between the two centroids. Furthermore, as the granularity of fairness increases,
the distance between the centroids of learned representations decreases. For exam-
ple, PinSage, which has no mitigation of popularity bias, has the largest distance
of 0.172. ZeroSum [51], which considers group fairness, decreases the distance to
0.143, MACR [59], which uses counterfactual estimation, shrinks to 0.055. Finally,
our methods, REDRESS and BOOST are able to achieve both the lowest distance
and the correct orientation between the two embedding spaces. In these results, we
see that the domain-awareness of our methodology, which enables it to understand
musical similarity between items, allows it to be resistant to the effects of popu-
larity bias on a learned song embedding. Thus, in the setting of musical discovery,
it is able to uncover proximity between items which are musically coherent even
if they are not necessarily of similar popularity status. And, in doing so, we build
representations that are complex, expressive, and effective for music recommen-
dation.
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5.2 RQ2: How Does Our Individual Fairness Approach Compare
to Existing Methods for Mitigating Popularity Bias?

Table 3. Comparison between all methods. Note: We use bold text to represent the best
performance within a column. In addition, we calculate statistical significance using the
Wilcoxon signed-rank test [50] to results between PinSage and BOOST. We show that the
BOOST method achieves the best performance along all fairness metrics when compared
with debiasing benchmarks.

Classic Music Fairness

Data | Model Recall@100 NDCG@100 Artist Recall@100 | Flow Diversity %LT LT Cvg Artist Cvg

MPD | Features | 0.041 0.073 0.073 0.900 0.841 0.588 0.022 0.073
MostPop | 0.044 0.048 0.141 0.908 0.680 0.0 0.0 0.001
LightGCN | 0.106 + 0.004 | 0.119 + 0.004 |0.272 + 0.011 0.905 £ 0.000 |0.672 £ 0.025 |0.002 £ 0.000 |0.000 + 0.000 |0.025 + 0.001
PinSage 0.068 + 0.002 | 0.144 + 0.003 | 0.139 + 0.003 0.931 £ 0.001 |0.707 £ 0.003 |0.476 £ 0.002 |0.032 £ 0.000 |0.105 * 0.000
ZeroSum | 0.044 £ 0.002 |0.043 £ 0.002 |0.220 * 0.008 0.904 £ 0.001 | 0.765 £ 0.013 |0.000 + 0.003 | 0.000 + 0.000 |0.048 + 0.002
xQuAD 0.064 + 0.005 |0.104 + 0.006 |0.135 + 0.013 0.927 £ 0.004 |0.703 £ 0.059 |0.226 + 0.001 |0.017 £ 0.000 |0.098 + 0.004
MACR 0.028 + 0.014 | 0.030 + 0.015 | 0.149 + 0.022 0.902 + 0.002 |0.831 £ 0.034 |0.019 + 0.006 |0.000 + 0.001 |0.011 + 0.003
REDRESS | 0.045 + 0.002 | 0.100 + 0.003 | 0.162 £ 0.004 0.969 + 0.032 | 0.829 + 0.001 |0.504 + 0.003 |0.036 + 0.004 |0.117 + 0.000
BOOST 0.020 + 0.004 | 0.047 + 0.003 |0.137 + 0.002 0.979 + 0.000 | 0.899 + 0.002 | 0.522 + 0.001 | 0.037 +0.003 |0.125 +0.000
p values 4.408083e-16 | 1.768725¢-19 | 0.727897 3.751961e-61 | 1.168816e-29 | 0.000596 - -

LFM |Features | 0.033 0.037 0.041 0.996 0.919 0.486 0.005 0.034
MostPop | 0.015 0.011 0.046 0.926 0.600 0.000 0.000 0.001
LightGCN | 0.026 + 0.001 | 0.023 + 0.001 | 0.068 + 0.001 0.998+ 0.000 | 0.505 + 0.012 | 0.000 + 0.000 |0.000 + 0.000 |0.003 + 0.001
PinSage 0.064 + 0.001 | 0.095 + 0.002 | 0.077 + 0.002 0.969 + 0.000 |0.775 + 0.003 |0.437 + 0.001 | 0.008 + 0.000 |0.053 + 0.001
ZeroSum | 0.001 £+ 0.003 |0.001 £ 0.001 |0.045 £ 0.004 0.996 + 0.008 | 0.866 + 0.000 |0.007 + 0.000 |0.000 + 0.000 |0.032 + 0.001
xQuAD 0.055 + 0.001 | 0.064 + 0.001 |0.068 + 0.002 0.998 + 0.000 |0.801 + 0.008 |0.212 + 0.000 |0.004 + 0.000 |0.053 + 0.001
MACR 0.014 + 0.001 | 0.014 + 0.001 | 0.049 + 0.007 0.996 + 0.003 | 0.777 £ 0.050 | 0.002 + 0.004 |0.000 £ 0.000 | 0.001 + 0.000
REDRESS | 0.038 + 0.002 | 0.053 + 0.004 | 0.057 £ 0.001 0.998 £ 0.002 | 0.862 + 0.004 |0.451 +0.000 |0.008 + 0.002 |0.056 + 0.000
BOOST 0.005 + 0.001 | 0.007 + 0.001 | 0.029 + 0.002 0.999 + 0.000 | 0.941 + 0.003 | 0.498 + 0.006 | 0.010 + 0.000 | 0.068 + 0.001
p values 5.696989¢-08 | 1.179627e-15 | 1.914129e-07 0.001408 1.112495e-34 | 2.477700e-11 |- -

Analyzing Utility Performance: First, we look at the comparison between
the backbone recommender systems and their debiasing counterparts. Within the
greater fairness community it is typical to see a trade-off between recommendation
utility and the effectiveness of a debiasing technique [32]. Indeed, in our experi-
ments this trade-off is present. For example, evaluating the columns of Recall and
NDCG on Table 3 we can see that both recommender systems outperform their
debiasing counterparts. However, we argue that the presence of this trade-off in
the discovery setting is not only expected but also, potentially desirable. Since
the premise of the canonical recommendation utility metrics is to reward a system
that can accurately recover the exact tracks a user liked, any attempts to promote
long tail content that wasn’t originally listened to is penalized, even if it is well
aligned with a user’s taste. In recent years, several recommendation works have
suggested that this trade-off, though present in offline testing, doesn’t necessarily
carry over into online testing [11,32]. Even more so, in the discovery setting, where
the premise of algorithmic curation is facilitating user interactions with music that
isn’t already top-of-mind, the drop in performance can be attributed to the sys-
tems’ purposeful avoidance of previously popular items, in favor of other musically
coherent and relevant content.
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Fig. 3. Dataset Breakdown by Long Tail Definition: Using our formulation of pop-
ularity we can see that the two datasets have different distributions of popularity in their
training data which, in turn, helps explain fairness/performance tradeoffs.

Analyzing Musical Performance: Inorder to further analyze the performance
of our debiasing method, we look at the in performance on the music metrics, Artist
Recall and Flow. In particular, Flow plays an important role in the music discovery
task because studies have indicated that users are drawn to homogeneous listen-
ing suggestions when engaging with algorithmic curation [6,32]. As we can see in
both datasets, REDRESS and BOOST consistently achieve the highest Flow. By
harnessing musical features and in our debiasing technique, our method generates
representations that are indicative of musical similarity. Crucially, if we consider
the implications of such a debiasing technique on a mainstream user, these results
indicate that our debiasing method’s awareness of musical similarity will enable it
to maintain the stylistic elements that such a user is drawn to, even if it is promot-
ing niche content.

Analyzing Fairness Performance: Next, we compare the performance among
the various fairness promotion methods. Looking at the columns of Recall and
NDCG on Table 3, we can see that, as expected, xQuAD [2] which is a re-ranking
method is able to preserve the highest utility. However, among the in-processing
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Fig. 4. Group By Group Analysis of Recommendations: We show that REDRESS
and BOOST select the largest amount of items from the lowest bins. Note: visibility
indicated the number of item from group k appearing in the final recommendations
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methods, REDRESS is able to achieve the second highest utility. Meanwhile, look-
ing at the fairness metrics, it is clear that REDRESS and BOOST are the high-
est performing methods. In particular, looking at the columns for LT and LT
Cvg, we can see that REDRESS is noticeably better than the other methods and
BOOST is able to improve on its performance. Crucially, our method is able to
have high values in both coverage and percentage of long tail items indicating that
REDRESS/BOOST is not just prioritizing niche items but also choosing a diverse
selection from among them.

Effects of Popularity Definition: As we can see in Fig. 4 the definition of pop-
ularity plays a significant role in the model selection method especially in the case
where user preferences encoded in the training data skew towards popular items.
In particular, using a less granular definition for popularity bins can synthetically
inflate the performance of % LT and LT Cvg. For example, we can see that methods
like xQuAD and ZeroSum are selecting a majority of their items from bins mid-
popularity bins. Using a classical long tail methodology, these differences would
not be as visible, masking distinctions among the baselines’ fairness.

6 Limitations of Our Work

First, it is important to remember that recommender systems are responsible for
serving the tastes of listeners, not policing them, and we do not deny the validity
of mainstream listening practices. Thus, the intention of this work is to serve the
needs of all users, mainstream and niche equally. However, due to our lack of access
to online evaluation settings we cannot confirm that the effects of debiasing will
not affect mainstream users’ listening experiences. We leave this analysis for future
work. Second, due to the nature of publicly available data, both of these datasets
skew heavily towards Western, anglophone content and are not representative of
the wide array of music that is available for consumption. Finally, we acknowl-
edge that our definition of discovery is grounded in qualitative metrics and cannot
encompass the entire complexity of a discovery experience.

7 Conclusion

In this work, we address the problem of mitigating popularity bias in music rec-
ommendation. We focus our objective on the task of facilitating meaningful music
discovery. In particular, we emphasize the critical aspects of discovery which dif-
ferentiate it from generalized music recommendation and underscore the negative
effects that popularity bias can have on users’ ability to uncover novel music. On
the basis of this motivation, we unravel the intrinsic ties between popularity bias
and individual fairness, proposing a domain-aware debiasing method that uses
musical similarity to counteract the effects of popularity on learned representa-
tions. Finally, we perform extensive evaluation on two music datasets showing the
improvements of our domain aware method in comparison with three state of the
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art popularity bias mitigation techniques. While we have designed this method
with the explicit focus of music recommendation, we hope that these promising
findings can inspire future approaches which are grounded in concrete, domain
specific attributes in a wide variety of applications.
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