
Learning to Aggregate Vertical Results into Web Search
Results

Jaime Arguello
∗

School of Information and
Library Science

University of North Carolina
Chapel Hill, NC, USA
jarguello@unc.edu

Fernando Diaz
Yahoo! Labs New York

New York, NY, USA
diazf@yahoo-inc.com

Jamie Callan
Language Technologies

Institute
Carnegie Mellon University

Pittsburgh, PA, USA
callan@cs.cmu.edu

ABSTRACT
Aggregated search is the task of integrating results from
potentially multiple specialized search services, or verticals,
into the Web search results. The task requires predicting
not only which verticals to present (the focus of most prior
research), but also predicting where in the Web results to
present them (i.e., above or below the Web results, or some-
where in between). Learning models to aggregate results
from multiple verticals is associated with two major chal-
lenges. First, because verticals retrieve different types of
results and address different search tasks, results from dif-
ferent verticals are associated with different types of predic-
tive evidence (or features). Second, even when a feature is
common across verticals, its predictiveness may be vertical-
specific. Therefore, approaches to aggregating vertical re-
sults require handling an inconsistent feature representation
across verticals, and, potentially, a vertical-specific relation-
ship between features and relevance. We present 3 general
approaches that address these challenges in different ways
and compare their results across a set of 13 verticals and
1070 queries. We show that the best approaches are those
that allow the learning algorithm to learn a vertical-specific
relationship between features and relevance.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Storage and Retrieval

General Terms
Algorithms

General Terms
aggregated search, federated search, query intent, learning
to rank

∗Work done at Carnegie Mellon University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

1. INTRODUCTION
In addition to providing Web search, commercial search

engines provide access to specialized search services (referred
to as verticals) that focus on a specific information-seeking
task (e.g., search for news, images, video, local businesses,
items for sale, weather forecasts, etc.). Aggregated search
refers to the detection and integration of relevant vertical
content into the Web search results page. The problem is
typically decomposed into two sub-tasks. It is impractical,
if not impossible, to issue the query to every vertical. Thus,
the first sub-task (vertical selection) is to predict which ver-
ticals, if any, are relevant [2, 3, 6]. Typically, this is done
without issuing the query to the vertical [2, 3]. The second
sub-task (vertical results presentation) is to predict where
in the web results to display those verticals selected [16, 1].
This work focuses on the vertical results presentation task.

If we assume that vertical results must be presented in spe-
cific positions relative to the Web search results (i.e., above,
below, or in between certain Web results), then the verti-
cal results presentation task can be cast as block-ranking.
A block is defined as a short sequence of Web or same-
vertical results which must be presented grouped together—
vertically (e.g., news) or horizontally (e.g, images)—in the
final search results page. A Web block corresponds to a
set of Web results which cannot be partitioned in the final
presentation (e.g., Web results 1-3, 4-6, and 7-10). A ver-
tical block corresponds to the top results from a particular
vertical. The goal of block-ranking is to predict a ranking
of blocks that approximates, based on some metric, a gold
standard ranking. We propose and evaluate three supervised
machine learning approaches to block-ranking.

Casting block-ranking as a supervised machine learning
problem is associated with two main challenges. First, be-
cause verticals retrieve different types of results (e.g., news
articles, images, videos, local business information, weather
forecasts), blocks from different verticals are associated with
different types of predictive evidence or features. For exam-
ple, news results are associated with a publication date, lo-
cal results are associated with a geographical location, and
community Q&A results are associated with a number of
suggested answers. Thus, block-ranking requires approaches
that can handle an inconsistent feature representation across
verticals. Secondly, even if a feature is common to multiple
verticals, it may not be equally predictive. For example,
the number of results retrieved by the vertical will likely be
more predictive for news than weather, which retrieves at
most a single result. Alternatively, a feature may be predic-

tive for different verticals, but in the opposite direction. For
example, the query-term “pics” may be positive evidence for
images, but negative evidence for shopping. Thus, block-
ranking may require approaches that can exploit a vertical-
specific predictive relationship between features and rele-
vance. We propose methods that address both challenges
in different ways.

We evaluate approaches that rank blocks as a function
of a set of features. We partition features into two general
classes: pre-retrieval and post-retrieval features. During ver-
tical results presentation, we assume that the system has al-
ready issued the query to each vertical, or at least those
predicted relevant during vertical selection. Thus, post-
retrieval features can be derived directly from the vertical
results. We investigate the cost-benefit of post-retrieval fea-
tures. Are they useful for predicting where a vertical should
be presented? Can they also be used to re-evaluate vertical
selection decisions in light of the vertical results? Answering
these questions affects, for example, whether the end-to-end
system should attempt to issue the query to as many ver-
ticals as possible (to derive these features), or whether it
should cache post-retrieval features for future impressions
of the query.

2. RELATED WORK
Research in aggregated search can be described along sev-

eral dimensions: number of verticals considered, number of
positions in which vertical content can be integrated, and
sources of training data. The earliest work in aggregated
search integrated the content from a single vertical above
the first Web result [6, 10, 12]. Unfortunately, evaluating the
performance of a single vertical in isolation ignores possible
contention with other verticals. As a result, more realistic
models were developed which considered several verticals
simultaneously [2, 3, 7]. Limiting integration to the top po-
sition is rather crude when considering the nuanced nature
of user intent. For example, if a query’s dominant intent is
navigational, there may be a secondary, less popular, news
intent which should be surfaced lower in the ranked list. In
order to address this, more recent work has focused on in-
tegrating at arbitrary positions in the ranked list [1, 16].
Finally, all of the prior work in aggregated search uses ma-
chine learning methods and, as a result, sources of training
data become important. Training data has included edito-
rial judgments [2, 1, 12], click information [6, 10, 16], and
indirect labels from other verticals [3].

We focus our experiments on methods of learning order-
ings of generic Web and vertical content using pairwise labels
[14]. This is quite different from prior work which focuses on
minimizing misclassification of vertical relevance [2, 3, 7, 12]
or regressing against a click-based target [6, 10, 16]. In the
language of ‘learning to rank’, these previous approaches are
based on pointwise sources of relevance while our approach
focuses on pairwise sources.

3. PROBLEM DEFINITION
At query time, the aggregated search system issues the

query to the Web search engine and to those verticals se-
lected, which we refer to as the candidate verticals. The
aggregation task is subject to a set of layout constraints.
We assume the following constraints. First, we assume that
results from the same vertical must be presented together.

Second, vertical results can only be embedded in specific po-
sitions relative to the Web results. We assume four slotting
positions: above the first Web result, between Web results
3 and 4, between results 6 and 7, and below the tenth Web
result. Third, Web results are always presented and main-
tain their original order. Fourth, each candidate vertical is
associated with a set of top results, which are given. That is,
the system does not predict which results from a particular
vertical to present. Finally, we assume that users prefer to
not see non-relevant vertical results even below the last Web
result. The system is free to suppress a candidate vertical,
for example, based on its results.

Combined, these layout constraints form a set of blocks.
Each candidate vertical forms its own vertical block and our
four slotting positions divide the top 10 Web results into
three Web blocks: Web results 1-3 (w1), 4-6 (w2), and 7-10
(w3). We define the block-ranking task as follows. Let Bq

denote the set of Web and vertical blocks associated with
query q and let σ∗q denote the optimal ordering of Bq for
query q, referred to as the reference ranking. The objec-
tive of block ranking is to predict a ranking of blocks σq

that approximates σ∗q . The quality of the approximation
can be measured using a rank-based distance metric, such
as Kendall’s τ . We discuss this in Section 6.5.

In addition to deciding where to present vertical results,
the task is also to filter non-relevant candidate verticals.
Suppressed verticals are modeled using an imaginary “end
of search results” block, denoted as eos. The eos block is in-
cluded in Bq, and, therefore, appears in both σq and σ∗q . Let
σq(i) denote the rank of block i in σq. Blocks ranked above
eos are considered to be displayed to the user and those
ranked below it are suppressed. Because the sub-ranking
of blocks below rank σq(eos) is not observed by the user,
for the purpose of comparing σq with σ∗q , all blocks ranked
below eos in σq are considered tied at rank σq(eos) + 1.

4. FEATURES
We propose machine learning approaches to rank blocks

as a function of a set of features. We use various types
of features which we believe are predictive of a particular
block’s relevance to a query. These can be divided into two
general classes. Pre-retrieval features can be generated with-
out issuing the query to the Web or vertical search engine.
These include, for example, the topic of the query or whether
the query contains a particular named-entity type (e.g., the
name of a person, product, or location). Post-retrieval fea-
tures must be generated after the query is issued to the Web
or vertical search engine. These include, for example, the to-
tal number of results retrieved by the block’s search engine
or the average text-similarity between the query and the re-
sults presented in the block. We investigate the contribution
of post-retrieval features to performance.

4.1 Pre-retrieval Features
Pre-retrieval features can be generated before the query

is issued to the Web or vertical search engine.

Named-Entity Type Features.
These binary features correspond to named-entity types

possibly appearing in the query. Queries were automati-
cally annotated using the BBN IdentiFinder named-entity
tagger [4]. Named-entity features include location (possibly
predictive for local, maps, and weather), product (possibly

predictive for shopping), person (possibly predictive news
and images), and organization (possibly predictive for fi-
nance). In total, we focused on 24 named-entity types. Each
binary feature equals 1 if the named-entity type appears at
least once in the query and 0 otherwise.

Category Features.
Some verticals may be topically focused. Thus, knowing

the general topic of the query may help in block ranking. We
focused on 30 topical categories, derived as follows. First,
we selected 150 categories from the Open Directory Project
(ODP) hierarchy and crawled Web documents associated
with these ODP nodes. Then, in order to reduce the num-
ber of category features, these 150 categories were clustered
into 30 clusters. Clustering was done using complete-link ag-
glomerative clustering [15]. The distance between ODP cat-
egories was computed using the symmetric Kullback-Leibler
divergence [8] between category language models. We used
unigram language models with add-one smoothing to avoid
zero probabilities. Let θi denote the language model associ-
ated with cluster/category i. We set the ith category feature
for query q according to, 1

Z
∏

w∈q P (w|θi) where Z normal-

izes across clusters/categories.

Click-through Features.
User clicks are often viewed as surrogates for relevance.

The queries associated with clicks on a particular document
convey the types of information needs the document satis-
fies. Likewise, the queries associated with clicks on vertical
results convey the types of information needs the vertical
satisfies. Our click-through features harness this type of ev-
idence by considering the similarity between the query and
those associated with clicks on vertical content (or content
very similar to the vertical’s).

Click-through data was derived from the AOL query-log.
We derived one click-through feature per vertical as follows.
First, for each vertical, we manually selected a set of Web
domains which we believe have content closely related to
the vertical. For local, we selected www.local.yahoo.com,
www.citysearch.com, and www.yellowpages.com. Then, we
constructed vertical-specific (unigram) language models us-
ing all queries (allowing duplicates) associated with click-
events on the vertical’s corresponding domains. Finally,
given a query, we generate one feature per vertical based on
the query generation probability given the vertical’s query-
based language model. Given query q, we set the click-
through feature for vertical i according to, 1

Z
∏

w∈q P (w|θi)
where Z normalizes across verticals.

Vertical-Intent Features.
Users often express vertical-intent explicitly using key-

words such as “news” (for the news vertical), “pics” (for the
images vertical) or “buy” (for the shopping vertical). The
goal of our explicit vertical-intent features is to determine
vertical relevance based on how often the query co-occurs
with keywords used in explicit requests for the vertical. For
example, given the query “britney spears”, we may predict
that images is relevant because users often issue the query
“britney spears pics”. Co-occurrence statistics were derived
from the AOL query-log.

Vertical-intent features were generated as follows. First,
we manually associated each vertical with a small set of key-

words which we believe are often used in explicit requests
for the vertical. For example, the images vertical was associ-
ated with “picture(s)”, “photo(s)”, “pic(s)”, and “image(s)”.1

Then, to measure the affinity between the query and a par-
ticular vertical, we use the chi-squared statistic to measure
the lack of independence between two events: the occur-
rence of the query in the AOL query-log and the occurrence
of any of the vertical’s vertical-intent keywords. To reduce
sparsity (particularly for long queries), we compute the chi-
squared statistic for each query-term individually and use
the geometric average. The geometric average (rather than
the arithmetic average) was used to favor queries with terms
that consistently co-occur with keywords used in explicit re-
quests for the vertical.

4.2 Post-retrieval Features
Post-retrieval features must be generated after the query

is issued to the Web or vertical search engine.

Hit Count Features.
This feature considers the number of results retrieved from

the Web or vertical search engine. For some verticals, an
abundance of query-related content in the index may be
predictive of its relevance. This may be true, for example,
for news, where the rate of content production may corre-
late with the rate of content demand. However, we do not
expect this feature to be useful for every vertical. For ex-
ample, the number of retrieved results contributes no useful
information for verticals that retrieve at most a single result
(finance, maps, and weather).

Temporal Features.
Some verticals may be time sensitive. Prior work shows

that recency is important in news search [6]. Temporal in-
formation was available for four verticals: news, blogs, com-
munity Q&A, and twitter. Our assumption is that, for these
verticals, users care primarily about recent results. If this is
true, then the average age of results presented in the block
should affect its relevance. Temporal features are generated
as follows. For each individual vertical result, we measure
the elapsed time (in hours) between the current and created
date/time. We included four features for each time-sensitive
vertical: the minimum, maximum, mean, and standard de-
viation of the elapsed time across results within the block.

Text-Similarity Features.
The goal of these features is to characterize the text-

similarity between the query and the results presented in
the block. The challenge in deriving text-similarity features
is that results from different sources (i.e., results from the
Web search engine and from different verticals) are associ-
ated with different sets of textual representations. For ex-
ample, each Web result is associated with three representa-
tions: a title, URL, and summary snippet. Each community
Q&A result is associated with two representations: a ques-
tion and an optional “best answer”. Each weather result is
associated with a single representation: the location, which
we define as the concatenation of the city, state, and country
of the weather forecast.

1The full vertical-to-keyword and vertical-to-domain
mappings are available at http://www.ils.unc.edu/
~jarguell/cikm11/.

Text-similarity features are generated for a query-block
pair in two steps. In the first step, for each result within the
block, we measure the text similarity between the query and
each representation associated with the result. We use four
different text-similarity measures: (1) the cosine similarity
between the query and the representation, (2) the maximum
number of query-terms appearing consecutively in the repre-
sentation, (3) the percentage of query-terms appearing in the
representation, and (4) the percentage of the representation
corresponding to a query-term. Similar text-similarity fea-
tures were used in prior learning-to-rank research (for doc-
ument ranking) [14, 9].

The second step depends on whether the block-type is
associated with a single result per block (e.g., weather, fi-
nance, and maps) or multiple results per block (e.g., news,
local, and shopping). For block-types with a single result, we
simply include our four similarity measures for each of its
text representations. For block-types with multiple results,
for each query-representation similarity measure, we use the
minimum, maximum, mean, and standard deviation across
results within the block.

4.3 Summary of Features
Pre-retrieval features are independent of the block. Thus,

every block-type is associated with the same set of 80 pre-
retrieval features: 24 named-entity type features, 30 cate-
gory features, 13 click-through features, and 13 vertical in-
tent features. Notice that we included all 13 click-through
features (one per vertical) and all 13 vertical intent features
(one per vertical) in every block’s feature representation, ir-
respective of its type. Post-retrieval features, as opposed to
pre-retrieval features, are derived directly the block (e.g., the
average text-similarity between the query and the title of re-
sults within the block) or from the search engine’s response
to the query (e.g., its hit count). Different block-types were
associated with a different set of post-retrieval features. Hit
count features were omitted for verticals that retrieve at
most a single result (i.e., finance, maps, and weather). Tem-
poral features were only available for news, blogs, commu-
nity Q&A, and twitter. Text-similarity features are incon-
sistent because different block-types are associated with dif-
ferent representations and a different number of results—
block-types with multiple results per block require aggre-
gating evidence by taking the minimum, maximum, mean,
and standard deviation of query-representation similarities
across results.

5. BLOCK-RANKING APPROACHES
As previously mentioned, casting block-ranking as a su-

pervised machine learning problem is associated with two
main challenges. First, different types of blocks are associ-
ated with different features. Second, even when a feature is
common to multiple block-types, it may have a type-specific
relationship with relevance. We propose three general ap-
proaches which address both challenges in different ways.

5.1 Classification Approach
Our classification framework takes the form of n indepen-

dent binary classifiers (one per vertical). We choose to use
logistic regression due to its prediction accuracy and training
speed on large-scale classification tasks [13].

Each binary classifier is trained to predict whether a par-
ticular vertical should be presented (ranked above eos) or

suppressed (ranked below eos). While training the classifier
for vertical v, a query is considered a positive instance if v
is ranked above eos in the reference ranking σ∗q and a nega-
tive instance otherwise. To compensate for class imbalance
(verticals are more often suppressed), each positive training
instance is weighted according to the number of negative
instances in the training set and vice-versa [5].

The classification approach produces a block-ranking by
assigning vertical blocks to slots. Consistent with our lay-
out constraints, we assume four vertical slotting positions
relative to the Web results: slot s1 (above w1), slot s2 (be-
tween w1 and w2), slot s3 (between w2 and w3), and slot s4
(between w3 and eos). In the output ranking, a slot may
contain zero or more vertical blocks.

The classification approach combines all n vertical-specific
binary classifiers as follows. First, the query, represented as
a vector of features, is submitted to each candidate vertical’s
classifier. Each classifier outputs a prediction probability
that its vertical should be presented (i.e., ranked above eos
in the predicted ranking σq). Let P (σq(v) < σq(eos)) de-
note the prediction probability that v should be presented.
Then, each candidate vertical is assigned to a slot (or is sup-
pressed) using four threshold parameters τ1−4. Vertical v is
assigned to slot x if P (σq(v) < σq(eos)) ≥ τy ∀ x ≤ y. In
other words, vertical v is assigned to the highest slot for
which v’s prediction probability is greater than or equal to
all thresholds below it. At this point, vertical blocks as-
signed to the same slot are tied. Finally, ties are broken by
ordering vertical blocks within the same slot by descending
order of prediction probability.

The classification approach addresses the two challenges
mentioned above by training a different binary classifier per
vertical. Each classifier adopts its own feature representa-
tion, which is unique to the vertical, and learns a vertical-
specific relationship between features and block relevance.

5.2 Voting Approach
In the classification approach, each independent binary

classifier is trained to predict whether a particular vertical
should be presented or suppressed. Our voting approach also
combines independent binary classifiers. However, these are
trained to make more fine-grained predictions. Independent
binary classifiers are trained to predict the relative ordering
between pairs of blocks of a particular type. Each classifier
is trained to predict whether block i (of a particular type)
should be ranked above or below block j (of another partic-
ular type) for a given query. The voting approach uses one
binary classifier per block-type pair.

The training phase proceeds as follows. Recall that Bq

denotes the set of block associated with query q and in-
cludes one block per candidate vertical, all three Web blocks
(w1−3), and the eos block. While training a classifier spe-
cific to a block-type pair, the query is considered a positive
or negative instance depending on the pair’s relative rank.
Certain block-type pairs occur more frequently in one order
versus the other. To correct for class imbalance, each pos-
itive training instance is weighted according to the number
of negative instances in the training set and vice-versa [5].

To predict a block-ranking for query q, first, every block-
pair i, j ∈ Bq is submitted to the appropriate classifier, de-
pending on the type of i and the type of j. Let P (σq(i) <
σq(j)) denote the prediction probability that i should be
ranked above j. This probability can be treated as a prefer-

ence score between i and j. The voting approach produces
the output block-ranking σq by combining these preference
scores as input to the Schulze voting method [17].

As in the classification approach, each binary classifier
is associated with a unique feature representation. More
specifically, each classifier is associated with three sets of
features: one set of pre-retrieval features, which are inde-
pendent of the block-types under consideration, and two
separate sets of post-retrieval features (one set specific to
each type in the block-type-pair).

The voting approach addresses both challenges mentioned
above (block-type-specific features and a potentially differ-
ent predictive relationship across types) by training a dif-
ferent binary classifier per block-type pair. Each classifier
adopts its own feature representation and learns a predictive
relationship that is specific to the block-type-pair.

Given n verticals andm non-vertical block-types, the total
number of binary classifiers used by the voting approach is
given by

(
n+m

2

)
−
(
m
2

)
. The second term accounts for the fact

that Web results are always presented and always ranked
in their original order (i.e., σq(w1) < σq(w2) < σq(w3) <
σq(eos)). Thus, it is not required to learn a classifier to de-
termine the relative ordering between pairs of non-vertical
blocks. In our case, n = 13 and m = 4, which results in 130
independent binary classifiers. The large number of binary
classifiers used by this method may be viewed as a disadvan-
tage. An alternative to learning one model per block-type
pair is to learn one model per vertical/non-vertical block-
type pair. This results in four models per vertical: three
which predict the vertical’s relevance compared to each Web
block (w1−3) and one which predicts its relevance compared
to eos (i.e., it predicts whether to display/suppress the ver-
tical). As before, given a query, every block-pair i, j ∈ Bq,
where one is a vertical- and the other a non-vertical block,
is submitted to the appropriate classifier. Then, the output
prediction probabilities are combined as the input to the
Schulze voting method in order to derive σq.

5.3 Learning to Rank Approaches
The block-ranking task can also be cast as a learning to

rank (LTR) problem. Many different learning to rank meth-
ods have been proposed. In this work, we adopt a pairwise
learning to rank approach. Pairwise approaches optimize
over the set of pairwise preferences implicit in the training
data. More specifically, we adopt a method that solves the
classic RankSVM optimization problem, first proposed by
Joachims [9]. RankSVM learns a linear model fw parame-
terized by feature weight vector w.

Casting block-ranking as an LTR problem requires train-
ing a single model fw to predict a block’s rank irrespective
of its type. In our situation, this is problematic because dif-
ferent block-types are associated with different features (i.e.,
some features may be specific to a handful of types and some
may be unique to a particular one). In addition, it is prob-
lematic because those features that are common to multiple
types (e.g., whether the query contains a city name) may be
predictive for some types more than others, or even predic-
tive for different types in the opposite direction. Next, we
propose three LTR variants which address these challenges
in different ways. Each variant makes a different assumption
about how features may be correlated with block relevance
across block-types.

Equally Correlated Features.
One alternative is to assume that each feature is equally

predictive of block relevance (in the same direction) inde-
pendent of the block-type. The feature representation is as
follows. Pre-retrieval features are independent of the block.
This model uses a single copy of each pre-retrieval feature.
Post-retrieval features are block-specific (i.e., they are gen-
erated directly from the block or the block’s search engine
results). Similar to pre-retrieval features, this approach also
uses a single copy of each post-retrieval feature. If a block is
not associated with a particular post-retrieval feature, then
the feature is zeroed-out in that instance. Consider, for ex-
ample, our post-retrieval features which determine the text-
similarity between the query and the summary snippets pre-
sented in the block. These features are only associated with
news and Web blocks w1−3. Therefore, if the block is not
one of these types, all these features are zeroed-out.

This approach assumes that features are equally corre-
lated with relevance irrespective of the block-type. Once
trained, model fw will apply the same weight to a feature
independent of the instance’s block-type. We denote this
LTR variant as LTR-G because it assumes a vertical-general
relationship between features and relevance.

Uniquely Correlated Features.
This approach makes the opposite assumption as the pre-

vious one. It assumes that every feature—whether it is a
pre- or post-retrieval feature—is uniquely correlated with
relevance across different block-types. The feature repre-
sentation is as follows. We make a separate, block-type-
specific copy of each feature. So, for example, given 17 block-
types (13 verticals + 3 Web blocks and the eos block), we
make 17 copies of each pre-retrieval feature (one per block-
type). Given an instance, all copies are zeroed-out except
for those corresponding to the instance’s block-type. For
post-retrieval features, we make one copy per block-type for
which the feature is available. Consider, for example, our
temporal features, which are available for blocks from blogs,
community Q&A, news, and twitter. We make 4 copies of
each temporal feature.

This approach assumes that features are correlated dif-
ferently with relevance depending on the block-type. Once
trained, model fw can apply a different weight to a fea-
ture, depending on the instance’s block-type. While this
added flexibility may be advantageous, the increased num-
ber of features may introduce predictive noise and result in
overfitting. Thus, this LTR variant may require more train-
ing data than LTR-G. We denote this LTR variant as LTR-S

because it assumes a vertical-specific relationship between
features and relevance.

Equally and Uniquely Correlated Features.
The previous two approaches make opposite assumptions:

features are either equally correlated or uniquely correlated
with relevance for different block-types. A third alternative
is to make neither assumption a priori, but to give the al-
gorithm the freedom to exploit both types of relationships
using training data.

For this approach, we maintain a single copy of each pre-
and post-retrieval feature which is shared across all block-
types. As before, if an instance’s block-type is not associated
with a shared feature, the feature is zeroed-out for that in-
stance. In addition to these shared features, we make one

block-type-specific copy of each pre- and post-retrieval fea-
ture. Given an instance, all copies corresponding to types
other than the instance’s block-type are zeroed-out. The
canonical feature representation for this approach is the union
of features used by the previous two approaches.

This approach makes no assumption about how a feature
is correlated with relevance across block-types. If a feature
is equally correlated across block-types, then the algorithm
can assign a large (positive or negative) weight to the copy
of the feature which is shared across types. Alternatively,
if a feature is correlated differently for different block-types,
then the algorithm can assign a large positive weight to some
copies of the feature and a large negative weight with to oth-
ers. We denote this LTR variant as LTR-GS because it has the
flexibility of learning a vertical-specific and vertical-general
relationship for each feature. Of all three LTR variants, LTR-
GS has the largest number of features and may therefore need
the most training data to avoid overfitting.

6. METHODS AND MATERIALS
We evaluate performance using a set of 13 verticals and

1070 queries. Our evaluation methodology is based on that
proposed in Arguello et al. [1]. For each query, a reference
block-ranking σ∗q is derived from human preference judge-
ments on block-pairs i, j ∈ Bq. These 1070 reference presen-
tations are used for training and evaluation. That is, during
training, algorithms are tuned to predict a block-ranking
σq that approximates the reference block-ranking σ∗q . Dur-
ing testing, we evaluate algorithms based on the quality of
their approximation on unseen queries. Following Arguello
et al. [1], we evaluate the predicted block-ranking σq based
on its generalized Kendall’s τ distance to σ∗q , denoted by
K∗(σ∗q , σq) [11]. Arguello et al. [1] presented a user study
which shows that when assessors strongly prefer one block-
ranking over another, the preferred block-ranking is scored
as being superior by this metric. That is, on average, the
preferred presentation is the one closest to σ∗q based on K∗.

Approaches are compared based on average performance
across queries using 10-fold cross-validation. Unless oth-
erwise stated, statistical significance is tested using a one-
tailed paired t-test (at the p < 0.05 level) by comparing per-
formance across test queries (i.e., the concatenation of all 10
test-folds). Next, we describe the methodology for deriving
σ∗q , the human relevance assessment process, the evaluation
metric K∗(σ∗q , σq), our set of verticals and queries, and some
algorithm implementation details.

6.1 Deriving the Reference Block-Ranking
We provide a general overview of how σ∗q is derived from

human relevance assessments and refer the reader to Ar-
guello et al. [1] for more details.

Given query q, the reference presentation σ∗q is derived
from redundant pairwise preference judgements collected for
all block-pairs i, j ∈ Bq. That is, every candidate block-pair
for the query is shown to multiple assessors, who are asked
to state a preference or to state that both blocks i and j
should be suppressed. Let πq denote the full set of block-
pair judgements collected for query q and let πq(i, j) denote
the strength with which block i is preferred over j given
q. We collected 3 redundant judgements per triplet (q, i, j)
and set πq(i, j) equal to the number of assessors who prefer
i over j given q. πq(eos, i) was set equal to the number of
assessors who stated that i should be suppressed in conjunc-

tion with another block j. Finally, to derive σ∗q , block-pair
judgements πq are input to the Schulze voting method [17],
which converts these block-pair preferences into a ranking of
blocks. A detailed explanation of the Schulze voting method
is given in Schulze [17] and a description of how it is used
to infer σ∗q from πq is given in Arguello et al. [1].

6.2 Human Relevance Assessment
Block-pair assessments for 1070 queries were collected us-

ing Amazon’s Mechanical Turk (AMT). Assessors were com-
pensated US$ 0.01 per block-pair assessment. For a given
triplet (i, j, q), assessors were presented with the query q and
blocks i and j presented side-by-side in random order. The
only difference between our assessments and those collected
in Arguello et al. [1] is that assessors were not given a topic
description for the query. Instead, they were instructed to
judge blocks based on their best guess of the hypothetical
user’s intent. To do quality control, 10% of all block-pair
assessments were traps. In a trap assessment, the assessor
is given a triplet (q, i, j), but either block i or j is taken
from a query other than q. If the assessor selects the extra-
neous block as the preferred block, we consider it a failed
trap. Assessors with more than 2 failed traps had all their
judgements removed and re-submited to AMT.

6.3 Verticals and Queries
We focused on 13 verticals constructed using free APIs

from eBay (shopping), Google (blogs, books, weather), Recipe
Puppy (recipes), Yahoo! (community Q&A, finance, im-
ages, local, maps, news), Twitter (twitter), and YouTube
(video). For the local, maps, and weather verticals, queries
were mapped to a geographical location using Yahoo!’s Geo-
Planet API. For queries with no target location explicitly
mentioned (e.g., “home depot”), we assumed a particular lo-
cation and instructed assessors to interpret such queries as
a resident of that location. Blocks were constructed using
the vertical’s top results, assuming a maximum number of
results (e.g., 5) per vertical block.

A set of 1,070 queries for model learning and evalua-
tion was collected using sampling. We are interested not
only in performance across queries, but also across verticals.
Therefore, our sampling approach is biased towards cover-
age across our set of 13 verticals. For space reasons, we omit
the details of our sampling approach.2

6.4 Modeling Bias Towards Vertical Results
In some cases, one may prefer a system that is biased to-

wards vertical results. The aggregated web search provider
may want to tune the system so that it more frequently
presents vertical results and/or presents them higher in the
output presentation. This may occur, for example, in or-
der to gather user-interaction data or to satisfy contractual
obligations with vertical providers or advertisers.

Vertical bias can be modeled in our evaluation frame-
work using vertical pseudo-votes, a parameter p in the range
[0,∞). As previously noted, πq(i, j) corresponds to the num-
ber of assessors who prefer i over j given q. A vertical bias
can be introduced by incrementing this value by some num-
ber of pseudo-votes p, but only if i corresponds to a vertical
block. If i and j correspond to blocks from different ver-
ticals, this method increments both πq(i, j) and πq(j, i) by

2A description of our sampling approach is available at
http://www.ils.unc.edu/~jarguell/cikm11.

an equal number of pseudo-votes. This has the effect that,
after producing σ∗q using the Schulze voting method, vertical
results are ranked higher in σ∗q . However, the ranking of ver-
ticals relative to each other is unchanged. Modeling vertical
bias using vertical pseudo-votes changes σ∗q and, therefore,
changes model learning and evaluation. Rather than se-
lect a single pseudo-vote parameter p, we learn and evaluate
models across several values of p (i.e., p = {0, 1, 2, 3, 4, 5}).
Across values of p, the verticals ranked higher in σ∗q were
video, local, news, blogs, and community Q&A.

6.5 Evaluation Metric
The primary evaluation metric is the generalized Kendall’s

τ distance between the predicted block-ranking σq and the
reference block-ranking σ∗q , denoted asK∗(σ∗q , σq) [11]. Gen-
eralized Kendall’s τ is related to Kendall’s τ , which measures
the number of discordant pairs between two rankings of the
same set of elements. For our purpose, however, Kendall’s
τ has a major limitation: it considers all discordant pairs
equally important. In aggregated search, users typically
scan results from top to bottom. Thus, discordant pairs
at the top of the ranking should be more influential. As
suggested in Kumar and Vassilvitskii [11], discordances at
the top of the ranking can be made more influential by using
a DCG-like cost function. See Arguello et al. [1] for details.

6.6 Implementation Details
The classification framework described in Section 5.1 re-

quires tuning threshold parameters τ1−4, which are used to
slot verticals based on each classifier’s prediction confidence
value. In addition to these parameters, logistic regression
requires tuning cost factor C, which determines the cost of
misclassifying a training set instance. These 5 parameters
were tuned using 10-fold cross-validation. More specifically,
they were tuned for each train/test pair individually by do-
ing a second level of 10-fold cross-validation on each primary
fold’s training set. An exhaustive search was used to find the
parameter values with the best average performance across
secondary train/test pairs. The voting approach described
in Section 5.2 also uses logistic regression models: one per
block-type-pair. The C parameter was tuned as described
above. In both approaches, models were trained using the
LibLinear toolkit.3

The prior probability that a particular vertical is ranked
high is fairly low. This is a problem if during training the
LTR model learns that the best alternative is to present
w1−3 and suppress all verticals. In the classification and vot-
ing approach, we balanced the training data using instance
weighting (i.e., assigning more weight to the minority class).
Casting block-ranking as a learning-to-rank approach may
also require some form of instance weighting.

Our approach to instance weighting is as follows. Let
σw
q denote a block-ranking which presents Web blocks w1−3

in their original order and suppresses all verticals. Given a
training query q, −K∗(σ∗q , σw

q), which is in the range [−1, 1],
measures the distance between σ∗q and σw

q . If −K∗(σ∗q , σw
q)

is close to +1, it means that σ∗q has verticals presented in the
top ranks. If −K∗(σ∗q , σw

q) is close to −1, it means that σ∗q
has Web blocks w1−3 presented in the top ranks and verticals
presented in the low ranks or suppressed. Our approach
to instance weighting is to replicate queries in the training

3http://www.csie.ntu.edu.tw/cjlin/liblinear/

set proportional to this distance. This has the effect that
queries which deviate from σw

q are oversampled. The amount
of replication is controlled using parameter α. First, we
scale −K∗(σ∗q , σw

q) to zero min and unit max (using queries
from the training set). Then, we multiply this value by α.
Given training query q, the number of additional copies of
q in the training set is given by −αK∗min-max(σ∗q , σ

w
q). Note

that when α = 0, no additional copies of q are added to
the training set. We evaluate the effect of parameter α in
Section 8.1.

In addition to parameter α, RankSVM has a regulariza-
tion parameter λ. Both parameters were tuned using two
levels of 10-fold cross-validation. An exhaustive search was
used to find the parameter values with the best average per-
formance across secondary train/test pairs. We trained LTR
models using the sofia-ml toolkit.4

7. EVALUATION RESULTS
We evaluate three general approaches to block-ranking:

the classification approach, the voting approach, and the
LTR approach. One limitation of the voting approach is
that it requires a large number of independent binary clas-
sifiers. Thus, we evaluate a second version of the voting
approach that trains a binary classifier only for block-type-
pairs where one type corresponds to a vertical block-type
and the other corresponds to a non-vertical block-type. Both
are included in this evaluation. We also include all three
variants of the LTR approach, with parameter α tuned us-
ing cross-validation.

Results in terms of average K∗(σ∗q , σq) are presented in
Table 1. As previously mentioned, pseudo-vote parame-
ter p controls for vertical bias. The higher its value, the
greater the bias towards verticals ranked high. Rather than
choose a single parameter p, results are presented for p =
{0, 1, 2, 3, 4, 5}. When p = 0, the σ∗q ’s used for training and
evaluation have no vertical bias. The second row in Table 1
(WEB) corresponds to a degenerate baseline that suppresses
all vertical results and simply presents w1−3 above eos in
their original order.

Table 1 shows several meaningful trends. Performance
for all methods decreases with greater values of p (this was
expected for WEB). One possible reason is the following. As
p increases, the number of queries with top-ranked verticals
increases. This means that the room for error also increases.
When p is low, ranking w1−3 above all verticals is a reliable
and effective strategy.

When p = 0, WEB performs well. In fact, the only two ap-
proaches that significantly outperform WEB when p = 0 are
LTR-S and LTR-GS. Significance with respect to WEB is not
shown in Table 1. For values of p ≥ 3, all block-ranking
approaches significantly outperform WEB. Thus, given a ver-
tical bias, any of the three general block-ranking approaches
is better than presenting only Web results.

Both voting approaches perform similar to each other.
This is interesting because the second version (which learns
one binary classifier per vertical/non-vertical block-type) uses
many fewer binary classifiers than the first (which learns one
classifier per block-type). The performance for both voting
approaches, however, deteriorates for p ≥ 2.

The classification approach does surprisingly well consid-
ering that it uses a just one binary classifier per vertical. Its

4http://code.google.com/p/sofia-ml/

Table 1: Block-ranking results in terms of aver-
age K∗(σ∗q , σq). A M(O), N(H), and ∧(∨) denotes sig-
nificantly better(worse) performance compared to
the classification, voting (all pairs), and LTR-G ap-
proaches, respectively.

p = 0 p = 1 p = 2
WEB 0.982M 0.959M∨ 0.896O∨

classificationMO 0.950H∨ 0.943H∨ 0.924N

voting (all pairs)NH 0.984M 0.960M∨ 0.898O∨

voting (only v-w pairs) 0.980MH 0.956MH∨ 0.898O∨

LTR-G ∧∨ 0.980M 0.967MN 0.932N

LTR-S 0.986M∧ 0.970MN 0.937MN

LTR-GS 0.986M∧ 0.973MN∧ 0.936MN

p = 3 p = 4 p = 5
WEB 0.773OH∨ 0.656OH∨ 0.520OH∨

classificationMO 0.878N 0.824N∧ 0.775N∧

voting (all pairs)NH 0.830O∨ 0.744O∨ 0.734O∨

voting (only v-w pairs) 0.822O∨ 0.760ON∨ 0.734O

LTR-G ∧∨ 0.871N 0.798ON 0.754ON

LTR-S 0.883N∧ 0.838MN∧ 0.792MN∧

LTR-GS 0.882N∧ 0.843MN∧ 0.795MN∧

performance is competitive across all values of p, showing
that it can be effectively trained to fit different degrees of
vertical bias.

Comparing among the three LTR variants, performance
is significantly worse for LTR-G. It never performs better
and often performs significantly worse than LTR-S and LTR-

GS, particularly for values of p ≥ 3. For values of p ≥ 4,
LTR-G performs significantly worse than the classification
approach. The improvement of LTR-S and LTR-GS over LTR-
G reveals the importance of exploiting vertical-specific evi-
dence. Imposing the constraint that features must be simi-
larly correlated with relevance across different block-types
degrades performance. LTR-G and LTR-S perform better
by allowing the learning algorithm to exploit a block-type-
specific relationship between features and block relevance.

Compared to the classification approach, LTR-S and LTR-

GS both perform better. The improvement is significant for
all values of p, except p = 3, where all three perform at the
same level. We view this as a positive result in favor of cast-
ing block-ranking as a learning-to-rank task. In contrast
with the classification approach, both of these LTR vari-
ants perform better and require training only a single model
(rather than one per vertical). Relative to each other, LTR-S
and LTR-GS are statistically indistinguishable across all val-
ues of p (statistical significance not shown in Table 1). We
provide an explanation for this in Section 8.3.

8. DISCUSSION

8.1 Effect of Parameter α on LTR variants
The goal of parameter α is to focus LTR training on those

queries that have verticals ranked high. Given enough evi-
dence in favor of a particular vertical, we want to the LTR
model to overcome the prior probability that the vertical is
ranked low. Our method for instance weighting is to repli-
cate queries in the training set proportional to the K∗ dis-
tance between the reference block-ranking σ∗q and a one that
presents w1−3 and suppresses all verticals. Parameter α con-
trols the amount of replication.

We were interested in the effect of parameter α on per-
formance. Each LTR variant is evaluated under two con-

Table 2: Block-ranking results in terms of K(σ∗q , σq).
A M(O) denotes significantly better(worse) perfor-
mance compared to the classification approach. A
N(H) denotes a significant improvement(drop) in
performance for an LTR variant (with α tuned) com-
pared to its counterpart for which α = 0.

p = 0 p = 2 p = 4 p = 5
classification 0.950 0.924 0.824 0.775
LTR-G,α=0 0.983M 0.923 0.775O 0.701O

LTR-S,α=0 0.986M 0.928 0.798O 0.723O

LTR-GS,α=0 0.986M 0.940M 0.812 0.743O

LTR-G 0.980MH 0.932N 0.798ON 0.754ON

LTR-S 0.986M 0.937MN 0.838MN 0.792MN

LTR-GS 0.986M 0.936M 0.843MN 0.795MN

ditions. In the first condition, α = 0, which corresponds
to no replication—each training query q appears just once
in the training set. In the second condition, α is tuned by
sweeping across α = {0, 10, 25, 50}. Notice that α = 0 (no
replication) is a parameter choice. These results are identical
to those in Table 1. Table 2 presents results (in terms of av-
erage K(σ∗q , σq)) for all three LTR variants under these two
conditions. As a second point of reference, we also present
results for the classification approach. To conserve space,
we limit results to p = {0, 2, 4, 5}.

The relative performance between LTR variants when α =
0 (rows 3-5) is consistent with their relative performance
when α is tuned (rows 6-8). That is, LTR-S and LTR-GS

outperform LTR-G. Thus, we focus the discussion on LTR-S

and LTR-GS. For both approaches, tuning α (vs. setting it
to zero) has either no effect or significantly improves per-
formance. For p ≥ 4, setting α = 0 degrades performance
even compared to the classification approach. Thus, casting
block-ranking as a learning-to-rank task benefits not only
from allowing the algorithm to learn a block-type-specific
relationship between features and relevance, it also benefits
re-weighting training-phase instances in order to overcome
the prior probability that verticals are ranked low.

8.2 Feature Contribution to Performance
A feature ablation study was conducted to test each fea-

ture group’s contribution to overall performance, measured
in terms of average K(σ∗q , σq). The analysis is conducted
for both the classification approach and the LTR-S approach
because they performed the best in Section 7. Each fea-
ture group was individually omitted and this model was
compared to a model with access to all features. Because
features may be correlated, a non-significant drop in per-
formance does not necessarily mean that the feature group
contributes no useful information.

Results are presented in Table 3 for the classification ap-
proach and the LTR-S approach. The top four feature groups
are pre-retrieval features. The next four features are post-
retrieval features. The last row corresponds to a model that
ignores all post-retrieval features.

Table 3 shows several interesting results. The LTR-S ap-
proach appears to be slightly more robust to missing fea-
tures. One possible reason is the following. The classifica-
tion approach trains one independent binary classifier per
vertical. The LTR-S approach, on the other hand, trains a
single model. It may be that training a single model allows
the LTR-S approach to better shift its focus towards block-
types for which it is more confident.

Table 3: Feature ablation results for the classifica-
tion and LTR-S approaches. A N(H) denotes a signif-
icant improvement(drop) in performance compared
to the model with access to all features.

classification approach
p = 0 p = 2 p = 4 p = 5

all 0.950 0.924 0.824 0.775
no ne-type 0.003 -0.005 0.001 0.005

no cat 0.004 -0.83%H 0.003 0.000
no click -0.004 -1.71%H -1.97%H -2.05%H

no vert-intent -0.001 -1.15%H 0.000 -0.009
no hit 0.003 -0.005 0.002 0.013
no loc -0.001 -0.003 0.002 0.001

no temp -0.002 0.000 -0.002 0.000
no text-sim -0.003 -0.94%H -2.34%H -3.97%H

no post-ret -0.001 -0.86%H -2.29%H -3.44%H

LTR-S

p = 0 p = 2 p = 4 p = 5
all 0.986 0.937 0.838 0.792

no ne-type -0.02% 0.19% -0.42% 1.28%
no cat -0.10% 0.31% -0.35% 0.21%

no click -0.04% 0.26% -0.20% -0.13%
no vert-intent -0.03% 0.12% 0.16% 0.60%

no hit -0.15% -0.26% -0.45% -0.23%
no loc -0.01% 0.12% -0.65% 1.61%N

no temp 0.01% 0.05% -0.10% 0.65%
no text-sim -0.09% -0.41% -2.60%H -3.44%H

no post-ret -0.02% 0.08% -2.95%H -3.79%H

The features with the greatest drop in performance (at
least for p ≥ 4) are text-similarity features, which are a type
of post-retrieval feature. This shows the importance of de-
riving evidence directly from those results presented in the
block. Also, it suggests the importance of issuing the query
to as many vertical search engines as possible (in order to
derive this type of evidence) or caching these post-retrieval
features for future impressions of the query. Text-similarity
features may have contributed the most to performance be-
cause many of the block-types often ranked high in σ∗q were
associated with text-rich information. These included Web
blocks w1−3, news, blogs, and community Q&A.

Finally, omitting most feature groups did not result in
a significant drop in performance. There are two reasons
for this. First, features may be correlated. Second, most
verticals are rarely ranked high in σ∗q . Some of our features
may be essential to minority verticals, but this may not have
a noticeable effect on the average K∗(σ∗q , σq). We explore
this further in the next section.

8.3 Feature Contribution to Per-Vertical Per-
formance

We also investigated each feature group’s contribution to
per-vertical ranking performance. Evaluating a feature’s
contribution to a particular vertical is not trivial. Suppose,
for example, that we omit temporal features and want to
evaluate the effect on the news vertical. One possibility
might be to compare the news vertical’s predicted rank and
its ideal rank across a set of queries. However, omitting
temporal features may affect other verticals as well. And,
if so, then ranking mistakes for those verticals would dis-
place news from its ideal rank. For this reason, we focus our
analysis on the classification approach, which trains one bi-
nary classifier per vertical. Each vertical-specific classifier is

Table 4: Feature contribution to per-vertical perfor-
mance, based on AP. Statistical significance is tested
using a one-tailed paired t-test, comparing across
cross-validation test-folds. A N(H) denotes a signif-
icant improvement(drop) in performance compared
to the model with access to all features.

q & a blogs book finance image

all features 0.284 0.431 0.088 0.638 0.323

no ne-type 10.15%N 2.65%N 34.41%N -18.69%H 9.19%N

no cat 15.49%N -6.61%H 7.77% 21.95%N 6.61%N

no click 2.32%N 0.32% -1.29% -14.35%H -9.23%H

no vert-intent 7.80%N 2.60%N 1.97% 0.00% -19.34%H

no hit 5.53%N -0.61%H 3.65%N 2.44%N 0.81%
no loc 0.00% 0.00% 0.00% 0.00% 0.00%

no temp 0.12% -0.43%H 0.00% 0.00% 0.00%

no text-sim -8.44%H -12.35%H -31.16%H -3.38%H 2.47%

no post-ret -6.03%H -14.20%H -31.07%H -3.71%H 2.20%

local map news recipe shopping

all features 0.546 0.419 0.594 0.48 0.377

no ne-type -3.97%H -1.99% 13.04%N 6.97%N 1.35%

no cat -8.67%H -0.36% 21.92%N 18.10%N -32.93%H

no click -10.44%H -16.86%H 3.27%N -0.01% -8.88%H

no vert-intent 7.37%N -74.42%H 2.73% -3.63%H -0.65%

no hit -2.89%H -1.94%H -4.21%H 3.78%N 0.21%

no loc -8.84%H 13.12%N 0.00% 0.00% 0.00%
no temp 0.00% 0.00% 0.51% 0.00% 0.00%

no text-sim -16.93%H 0.00% -48.88%H 0.00% -8.02%H

no post-ret -18.04%H 13.15%N -45.26%H 3.78%N -10.96%H

twitter video weather

all features 0.053 0.571 0.938

no ne-type -14.19%H 2.14%N 4.55%N

no cat -0.91% 3.35%N -17.31%H

no click 1.99% -4.48%H -50.11%H

no vert-intent 0.31% 4.41%N -1.11%H

no hit -5.90%H -0.75%H -0.45%

no loc 0.00% 0.00% -17.68%H

no temp -5.71%H 0.00% 0.00%

no text-sim -26.78%H -12.11%H 0.00%

no post-ret -27.64%H -12.46%H -17.81%H

trained to predict whether the vertical should be displayed
(ranked above eos) or suppressed (ranked below eos) in σq.

Performance for a particular vertical is evaluated by con-
sidering the quality of confidence values produced by the
vertical’s corresponding classifier. Let Qv denote the queries
for which v is a candidate vertical. We evaluate the qual-
ity of confidence values output from v’s classifier by com-
puting the average precision (AP) metric on a ranking of
Qv (ranked in descending order of confidence value that v
should be presented). In computing AP, a ranked query q is
considered “relevant” if σ∗q (v) < σ∗q (eos) and “non-relevant”
otherwise. Results in terms of AP are presented in Table 4.
We limit our discussion to the case where p = 5 because it
is associated with verticals ranked higher in σ∗q .

Table 4 shows several noteworthy trends. First, perfor-
mance across verticals varied widely (see row “all features”).
The best-performing verticals were weather (AP=0.938), fi-
nance (AP=0.638), and news (AP=0.594). Interestingly,
both weather and finance were minority verticals. Both
were presented (i.e., ranked above eos in σ∗q) for only 14 and
21 queries, respectively. In spite of having few positive in-
stances for training, performance for both these verticals was
good. As it turns out, weather was easy because every query
for which it was presented had the query term “weather”
(e.g., “weather louisville ky”). This explains why the most
predictive feature for weather was the click-through feature
(i.e., the query’s similarity to queries with clicks on weather-
related content, many of which contain the term “weather”).
Similarly, finance was easy because 10/21 queries for which
it was presented had the query term “stock(s)” (e.g., “boeing
stock”). In other words, performance was high for weather
and finance because their queries often had explicit vertical
intent, which is easy to detect.

It is interesting that news was among the best performing
verticals. This is inconsistent with previous results on ver-
tical selection [2]. The most useful features for news were
text-similarity features, which are a type of post-retrieval
feature. Thus, while it is difficult to detect that a query
is newsworthy using only pre-retrieval evidence (as in Ar-
guello et al. [2]), useful evidence can be harnessed by issuing
the query to the news vertical.

The worst performing verticals were twitter (AP=0.053),
books (AP=0.088), and community Q&A (AP=0.284). Both
twitter and books were minority verticals, while community
Q&A was fairly common. Predicting twitter may require
predicting that the query is about a trending topic, which we
did not explicitly address. Predicting books and community
Q&A seems difficult. Queries for which these verticals were
relevant had no clear pattern. For books, for example, some
queries had the keyword “book” (e.g., “books on giraffes”),
some corresponded to a book title (e.g., “lolita”), some cor-
responded to an author name (e.g., “dr. phil”), and, finally,
others corresponded to encyclopedic information needs (e.g.,
“wedding cake ideas”, “why don’t babies sleep at night”,
“perennials”). Community Q&A queries showed a similar
pattern. This may explain why text-similarity features were
the only ones to significantly improve performance for both.
In the absence of a clearly predictive query-pattern, it seems
useful to derive evidence directly from the block.

Features contributed to performance differently for differ-
ent verticals. Vertical intent features, which exploit vertical-
related keywords, were predictive for maps and images. Many
queries for which maps was relevant had the keyword“map(s)”.
Similarly, many queries for which images was relevant had
the keywords “photo(s)”, “pic(s)”, and “picture(s)”. Cate-
gory features were predictive for shopping because one of
our category clusters was related to the shopping ODP node.
Different features also hurt performance for different verti-
cals. Named-entity type features hurt performance for books
and news. Category features hurt performance for commu-
nity Q&A, finance, news, and recipe. Click-through features
hurt performance for communtiy Q&A and news.

The only features that did not significantly hurt perfor-
mance for any vertical were text-similarity features. In the
previous section, text-similarity features had the greatest
contribution to overall performance. In this analysis, text-
similarity features were the most consistently predictive for
different verticals.

9. CONCLUSION
We proposed and evaluated three general machine learn-

ing approaches to block-ranking—ordering blocks of Web
and vertical results in response to a query. The best overall
performance was obtained by casting this as a learning-to-
rank problem. We showed, however, that to be successful,
the LTR model must be able to learn a vertical-specific rela-
tionship between features and block relevance. Our solution
to this problem is through feature replication (i.e. by mak-
ing a block-type-specific copy of each feature). This allows
the model to weight a feature as positive evidence for some
verticals and negative evidence for others.

Consistent with most prior work in aggregated search, ev-
idence integration is key to block-ranking. Different fea-
tures were predictive for different verticals. The features
that contributed the most to overall performance, and those
that were consistently predictive for different verticals, were

text-similarity features, which are a type of post-retrieval
feature. Their contribution to performance suggests the im-
portance of issuing the query to a vertical when possible or
of caching this type of evidence for future impressions of the
query (or queries similar to it).

10. ACKNOWLEDGMENTS
This work was supported in part by the NSF grant IIS-

0916553 and a gift from Yahoo! through its Key Scientific
Challenges program. Any opinions, findings, conclusions,
and recommendations expressed in this paper are the au-
thors’ and do not necessarily reflect those of the sponsors.

11. REFERENCES
[1] J. Arguello, F. Diaz, J. Callan, and B. Carterette. A

methodology for evaluating aggregated search results. In
ECIR 2011, pages 141–152. Springer Berlin / Heidelberg,
2011.

[2] J. Arguello, F. Diaz, J. Callan, and J.-F. Crespo. Sources
of evidence for vertical selection. In SIGIR 2009, pages
315–322. ACM, 2009.

[3] J. Arguello, F. Diaz, and J.-F. Paiement. Vertical selection
in the presence of unlabeled verticals. In SIGIR 2010,
pages 691–698. ACM, 2010.

[4] D. M. Bikel, R. Schwartz, and R. M. Weischedel. An
algorithm that learns what is in a name. Machine
Learning, 34:211–231, 1999.

[5] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen.
Classification and Regression Trees. Chapman and
Hall/CRC, 1984.

[6] F. Diaz. Integration of news content into web results. In
WSDM 2009, pages 182–191. ACM, 2009.

[7] F. Diaz and J. Arguello. Adaptation of offline vertical
selection predictions in the presence of user feedback. In
SIGIR 2009, pages 323–330. ACM, 2009.

[8] H. Jeffreys. An invariant form for the prior probability in
estimation problems. Proceedings of the Royal Society of
London. Series A, Mathematical and Physical Sciences,
186(1007):453–461, 1946.

[9] T. Joachims. Optimizing search engines using clickthrough
data. In KDD 2002, pages 133–142. ACM, 2002.

[10] A. C. König, M. Gamon, and Q. Wu. Click-through
prediction for news queries. In SIGIR 2009, pages 347–354.
ACM, 2009.

[11] R. Kumar and S. Vassilvitskii. Generalized distances
between rankings. In WWW 2010, pages 571–580. ACM,
2010.

[12] X. Li, Y.-Y. Wang, and A. Acero. Learning query intent
from regularized click graphs. In SIGIR 2008, pages
339–346. ACM, 2008.

[13] C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust region
newton methods for large-scale logistic regression. In ICML
2007, pages 561–568. ACM, 2007.

[14] T.-Y. Liu. Learning to rank for information retrieval.
Foundations and Trends in Informaton Retrieval,
3:225–331, 2009.

[15] C. D. Manning, P. Raghavan, and H. Schtze. Introduction
to Information Retrieval. Cambridge University Press,
New York, NY, USA, 2008.

[16] A. K. Ponnuswami, K. Pattabiraman, Q. Wu,
R. Gilad-Bachrach, and T. Kanungo. On composition of a
federated web search result page: Using online users to
provide pairwise preference for heterogeneous verticals. In
WSDM 2011, pages 715–724. ACM, 2011.

[17] M. Schulze. A new monotonic, clone-independent, reversal
symmetric, and condorcet-consistent single-winner election
method. Social Choice and Welfare, 36:267–303, 2011.

