Using Query Performance Predictors to Improve
Spoken Queries

Jaime Arguello!, Sandeep Avula', and Fernando Diaz?

! University of North Carolina at Chapel Hill

2 Microsoft Research
Abstract. Query performance predictors estimate a query’s retrieval
effectiveness without user feedback. We evaluate the usefulness of pre-
and post-retrieval performance predictors for two tasks associated with
speech-enabled search: (1) predicting the most effective query transcrip-
tion from the recognition system’s n-best hypotheses and (2) predicting
when to ask the user for a spoken query reformulation. We use machine
learning to combine a wide range of query performance predictors as
features and evaluate on 5,000 spoken queries collected using a crowd-
sourced study. Our results suggest that pre- and post-retrieval features
are useful for both tasks, and that post-retrieval features are slightly
better.

1 Introduction

Speech-enabled search allows users to formulate queries using spoken language.
The search engine transcribes the spoken query using an automatic speech recog-
nition (ASR) system and then runs the textual query against the collection.
Speech-enabled search is increasingly popular on mobile devices and is an impor-
tant component in multimodal search interfaces and assistive search tools [12].
While speech is a natural means of communicating an information need, spoken
queries pose a challenge for speech-enabled search engines. In a recent study,
55% of all spoken queries had recognition errors that caused a significant drop
in retrieval performance [7].

The goal of query performance prediction is to estimate a query’s effectiveness
without feedback. Current approaches are classified into pre- and post-retrieval
measures. Pre-retrieval measures are computed without conducting a full re-
trieval from the collection and capture evidence such as the query terms’ speci-
ficity [6,2, 18] and topical relatedness [5]. Post-retrieval measures are computed
from the query’s retrieval from the collection and capture evidence such as the
topical coherence of the top results [2] and the rank stability [1,17, 19, 20].

We investigate the usefulness of query performance predictors for two tasks
associated with speech-enabled search: (1) re-ranking the ASR system’s n-best
list and (2) deciding when to ask for a spoken query reformulation. While ASR
systems typically output the single most confident transcription of the input
speech, internally they construct a ranked n-best list of the most confident hy-
potheses. In our n-best list re-ranking task, the input to the system is a spoken
query’s n-best list, and the goal of the system is to predict the candidate tran-
scription from the n-best list that maximizes retrieval performance, which may
not necessarily be the top candidate.

In certain situations, a spoken query may perform poorly due to ASR error
or the user’s failure to formulate an effective query. In our second predictive task,
the input to the system is a spoken query (specifically, the top candidate from
the ASR system’s n-best list), and the goal of the system is to predict whether
to run the input query or to ask for a reformulation.

For both tasks, we use machine learning to combine a wide range of perfor-
mance predictors as features. We trained and tested models using a set of 5,000
spoken queries that were collected in a crowdsourced study. Our spoken queries
were based on 250 TREC topics and were automatically transcribed using freely
available APIs from AT&T and WIT.AI. We evaluate our models based on re-
trieval performance using the TREC 2004 Robust Track collection.

2 Related Work

The goal of query performance prediction is to estimate a query’s performance
without user feedback. Pre-retrieval measures capture evidence such as the query’s
specificity, topical coherence, and estimated rank stability [5]. In terms of query
specificity, different measures consider the query terms’ inverse document fre-
quency (IDF) and inverse collection term frequency (ICTF) values [2,6,18].
Other specificity measures include the query-scope—proportional to the number
of documents with at least one query term—and the simplified clarity—equal to
the KL-divergence between the query and collection language models [6]. Topi-
cal coherence can be measured using the degree of co-occurrence between query
terms [5]. Finally, the rank stability can be estimated using the query terms’
variance of TF.IDF weights across documents in the collection [18].

Post-retrieval measures capture evidence such as the topical coherence of the
top results, the actual rank stability, and the extent to which similar documents
obtain a similar retrieval score. The clarity score measures the KL-divergence
between the language model of the top documents and a background model
of the collection [2]. Rank stability approaches perturb the query [17,20], the
documents [19], or the retrieval system [1], and measure the degree of change
in the output ranking. The assumption is that more effective queries produce
more stable rankings. Finally, the auto-correlation score from Diaz [4] considers
the extent to which documents with a high text similarity obtain similar scores.
Pre- and post-retrieval performance predictors have been applied to IR tasks
such as reducing natural language queries [8, 16] and predicting the effectiveness
of different query reformulations [3, 13].

Prior work in the speech recognition domain also considered improving spo-
ken query recognition using evidence similar to the query performance predictors
mentioned above. Mamou et al. [10] focused on re-ranking the n-best list using
term co-occurrence statistics in order to favor candidates with semantically re-
lated terms. Li et al. [9] combined language models generated from different
query-click logs to bias the ASR output in favor of previous queries with clicks.
Peng et al. [11] focused on re-ranking the n-best list using post-retrieval evi-
dence such as the number of search results and the number of exact matches
in the top results. We extend this prior work in three ways. First, in addition
to re-ranking the n-best list, we consider the task of predicting when to ask for

a spoken query reformulation. Second, we combine a wider range of pre- and
post-retrieval performance predictors as features. Finally, we evaluate in terms
of retrieval performance instead of recognition error.

3 Data Collection

In the next sections, we describe the user study that we ran to collect spoken
queries, our search tasks, the ASR systems used, and our spoken queries.

User Study. Spoken queries were collected using Amazon’s Mechanical Turk
(MTurk). Each MTurk Human Intelligence Task (HIT) asked the participant to
read a search task description and produce a recording of how they would request
the information from a speech-enabled search engine.?

The study protocol proceeded as follows. Participants were first given a set
of instructions and a link to a video explaining the steps required to complete
the HIT. Participants were then asked to click a “start” button to open the
main voice recording page in a new browser tab. While loading, the main page
asked participants to grant access to their computer’s microphone. Participants
were required to grant access in order to continue. The main page provided
participants with: (1) a button to display the search task description in a pop-
up window, (2) Javascript components to record the spoken query and save the
recording as a WAV file on the participant’s computer, and (3) an HTML form
to upload the WAV file to our server.

Within the main voice recording page, participants were first asked to click
a “view task” button to display the search task description in a pop-up window.
The task was displayed in a pop-up window to prevent participants from reading
the task while recording their spoken query.* Participants were instructed to
read the task carefully and to “imagine that you are looking for information on
this specific topic and that you are going to ask a speech-enabled search engine
for help in finding this information”. Participants were asked to “not try to
memorize the task description word-by-word”. The instructions explained that
our goal was to “learn how someone might formulate the information request as
naturally as possible”.

After reading the task, participants were asked to click a “record” button to
record their spoken query and then a “save” button to save the recording as a
WAV file on their computer. Next, participants were instructed to upload the
saved WAV file to our server. The default WAV filename included the MTurk
assignment ID, which is unique to each accepted MTurk HIT. The assignment
ID was used by our server to check the validity of the uploaded WAV file. If
the uploaded file was valid, the participant was then given a 10-character com-
pletion code. Finally, participants were asked to validate and submit the code
to complete the HIT. As described in more detail below, we used a set of 250
search tasks and collected 20 spoken queries per search task, for a total of 5,000
spoken queries. Each HIT was priced at $0.15 USD.

3 Our source code and search task descriptions are available at: http://ils.unc.
edu/~jarguell/ecir2016/.
4 Participants had to close the pop-up window to continue interacting with the page.

Our HITs were restricted to workers with at least a 95% acceptance rate and
workers within the U.S. Also, in order to avoid having a few workers complete
most of our HITs, workers were not allowed to do more than 100 of our HITSs.
We collected spoken queries from 167 participants.

Search Tasks. Our 250 search tasks were based on the 250 topics from the
TREC 2004 Robust Track. We constructed our tasks using the TREC description
and narrative as guidelines and situated each task within a simulated scenario
that gave rise to the need for information:

TREC Topic 390: You recently read a news article about the Orphan Drug Act,
which promotes the development of drugs to treat “orphan” diseases that affect
only a small number of people. Now you are curious to learn more. Find informa-
tion about the Orphan Drug Act and how it is working on behalf of people who
suffer from rare diseases.

ASR Systems. In this work, we treat the ASR system as a “black box”
and used two freely available APIs provided by AT&T and WIT.AL® Both APIs
accept a WAV file as input and return one or more candidate transcriptions
in JSON format. The AT&T API was configured to return an n-best list in
cases where the API was less confident about the input speech. The AT&T API
returned an n-best list with at most 10 candidates along with their ranks and
confidence values. The WIT.AI API could not be configured to return an n-
best list and simply returned the single most confident transcription without a
confidence value.

Spoken Queries and ASR Output. In this section, we describe our spo-
ken queries and ASR output. To conserve space, we focus on the ASR output
from the AT&T API. The AT&T API was able to transcribe 4,905 of our 5,000
spoken queries due to the quality of the recording. Spoken queries had an aver-
age length of 5.86 +2.50 seconds and 10.04 + 2.18 recognized tokens. The AT&T
API returned an n-best list with more than one candidate for 70% of the 4,905
transcribed spoken queries.

We were interested in measuring the variability between candidates from the
same n-best list. To this end, we measured the similarity between candidate-pairs
from the same n-best list in terms of their recognized tokens, top-10 documents
retrieved, and retrieval performance. In terms of their recognized tokens, after
stemming and stopping, candidate-pairs had an average Jaccard correlation of
0.53 £ 0.23. In terms of their top-10 documents retrieved, candidate-pairs had
an average Jaccard correlation of 0.28 4+ 0.31. Finally, in terms of retrieval per-
formance, candidate-pairs had an average P@10 difference of 0.11 4+ 0.17. More
importantly, the most confident candidate achieved the best PQ10 performance
only 82.71% of the time. Together, these results suggest an opportunity to im-
prove retrieval performance by re-ranking the n-best list.

We were also interested in measuring the variability between spoken queries
from different study participants for the same TREC topic (using the most con-
fident candidate from the ASR system’s n-best list). In terms of their recognized

® http://developer.att.com/apis/speech and https://wit.ai/

tokens, spoken query-pairs had an average Jaccard correlation of 0.21 4+ 0.22. In
terms of their top-10 documents retrieved, the average Jaccard correlation was
0.12+0.23. Finally, the average difference in P@10 performance was 0.19+ 0.23.
These measures suggest great variability in spoken query performance, either
due to ASR error, background noise, or word choice. This helps motivate our
second task of predicting when the input query is poor and the system should
ask for a new spoken query.

4 Predictive Task Definitions

We investigate the effectiveness of existing query performance predictors on two
tasks pertaining to speech-enabled search: (1) re-ranking the ASR system’s n-
best list and (2) predicting when to ask for a spoken query reformulation.

Re-ranking the N-Best List. While ASR systems often output the single
most confident transcription, internally the system produces an n-best list of
the most confident hypotheses. Off-the-shelf ASR systems such as the AT&T
API can be configured to output the n-best list in cases where the system is less
confident about the input speech.

We define the n-best list re-ranking task as follows. The input to the sys-
tem is the spoken query’s n-best list and the goal of the system is to predict
the query transcription from the n-best that yields the greatest retrieval perfor-
mance, which may not necessarily be the top candidate. The goal of the system
is to maximize retrieval performance over a set of input n-best lists.

Predicting When to Ask for a Spoken Query Reformulation. In
certain cases, a speech-enabled search engine may decide that the input spoken
query is poor and may ask the user to reformulate the query. The input spoken
query may be poor due to an ASR error or the user’s word choice.

We define the spoken query reformulation task as follows. The input to the
system is a spoken query (specifically, the top candidate from the ASR system’s
n-best list) and the goal of the system is to predict whether to show the results for
the input query or to ask the user for a new spoken query. We assume that asking
the user for a reformulation yields a more effective query, but incurs a cost. More
formally, we assume that if the system decides to not ask for a reformulation,
then the user experiences a gain equal to the retrieval performance of the original
spoken query. Otherwise, if the system does decide to ask for a reformulation,
then the user experiences a gain equal to the retrieval performance of the new
query discounted by a factor denoted by « (in the range [0,1]). The system
must decide whether to ask for a new spoken query without knowing the true
performance of the original (e.g., using only pre- and post-retrieval performance
predictors as evidence).

To illustrate, suppose that given an input spoken query, the system decides
to ask for a reformulation. Furthermore, suppose that the original query achieves
an average precision (AP) value of 0.15 and that the reformulated query achieves
a AP value of 0.20. In this case, the user experiences a discounted gain of AP =
a x 0.20. If we set a = 0.50, then the discounted gain of the new query (0.50 x
0.20 = 0.10) is less than the original (0.15), and so the system made the incorrect
choice. Parameter « can be varied to simulate different costs of asking a user for

a spoken query reformulation. The higher the a, the lower the cost. The goal of
the system is to maximize the gain over a set of input spoken queries for a given
value of a.

5 Features

For both tasks, we used machine learning to combine different types of evi-
dence as features. We grouped our features into three categories. The numbers
in parentheses indicate the number of features in each category.

N-best List Features (2). These features were generated from the ASR
system’s n-best list. We included two n-best list features: the rank of the tran-
scription in the n-best list and its confidence value. These features were only
available for the AT&T API and only used in the n-best list re-ranking task.

Pre-retrieval Features (27). Prior work shows that a query is more likely
to perform well if it contains discriminative terms that appear in only a few docu-
ments. We included five types of features aimed to capture this type of evidence.
Our inverse document frequency (IDF) and inverse collection term frequency
(ICTF) features measure the IDF and ICTF values across query terms [6, 2, 18].
We included the min, max, sum, average, and standard deviation of IDF and
ICTF values across query terms. The query-collection similarity (QCS) score
measures the extent to which the query terms appear many times in only a
few documents [18]. We included the min, max, sum, average, and standard de-
viation of QCS values across query terms. The query scope score is inversely
proportional to the number of documents with at least one query term [6]. Fi-
nally, the simplified clarity score measures the KL-divergence between the query
and collection language models [6].

Prior work also shows that a query is more likely to perform well if the query
terms describe a coherent topic. We included one type of feature to capture this
type of evidence. Our point-wise mutual information (PMI) features measure
the degree of co-occurrence between query terms [5]. We included the min, max,
sum, average, and standard deviation of PMI values across query-term pairs.

Finally, a query is more likely to perform well if it produces a stable ranking.
We included one type of feature to capture this type of evidence. We estimate the
pre-retrieval rank stability by considering the query terms’ variance of TF.IDF
weights across the documents in the collection [18]. We included the min, max,
average, sum, and standard deviation of the variance across query terms.

Post-Retrieval Features (5). A query is more likely to perform well if
the top-ranked documents describe a coherent topic. We included three types
of features to model this type of evidence. The clarity score measures that KL-
divergence between the language model of the top documents and a background
model of the collection [2]. The query feedback score measures the degree of over-
lap between the top-ranked documents before and after query-expansion [20]. A
greater overlap suggests that the original query is on-topic. Finally, we consider
the normalized query commitment (NQC) score, which measures the standard
deviation of the top document scores. Following Shtok et al. [14], we included
three NQC scores: the standard deviation of the top document scores, the stan-
dard deviation of the scores above the mean top-document score, and the stan-
dard deviation of the scores below the mean top-document score.

6 Evaluation Methodology

Retrieval performance was measured by issuing spoken query transcriptions
against the TREC 2004 Robust Track collection. In all experiments, we used
Lucene’s implementation of the query-likelihood model with Dirichlet smoothing.
Queries and documents were stemmed using the Krovetz stemmer and stopped
using the SMART stopword list. We evaluated in terms of average precision
(AP), NDCG@30, and PQ10.

Re-ranking the N-Best List. We cast this as a learning-to-rank (LTR)
task, and trained models to re-rank an n-best list in descending order of retrieval
performance. At test time, we re-rank the input n-best list and select the top
query transcription as the one to run against the collection. We used the linear
RankSVM implementation in the Sophia-ML toolkit and trained separate models
for each retrieval performance metric.

Models were evaluated using 20-fold cross-validation. Recall that each TREC
topic had 20 spoken queries from different study participants. To avoid train-
ing and testing on n-best lists for the same TREC topic (potentially inflating
performance), we assigned all n-best lists for the same topic to the same fold.
We report average performance across held-out folds and measure statistical sig-
nificance using the approximation of Fisher’s randomization test described in
Smucker et al. [15]. We used the same cross-validation folds in all our experi-
ments. Thus, when testing significance, the randomization was applied to the 20
pairs of performance values for the two models being compared. We normalized
feature values to zero-min and unit-max for each spoken query (i.e., using the
min/max values from the same n-best list).

We compare against two baseline approaches: (1) selecting the best-performing
candidate from the n-best list (oracle) and (2) selecting the top candidate with
the highest recognition confidence (top).

Predicting Spoken Query Reformulations. We cast this as a binary
classification task. The input to the system is a spoken query’s most confident
transcription, and the goal of the system is to predict whether to run the input
query or to ask for a spoken query reformulation. If the system decides to run the
input query, then the user experiences a gain equal to the retrieval performance
of the original query. Otherwise, if the system decides to ask for a reformulation,
then the user experiences a gain equal to the retrieval performance of the new
spoken query discounted by a.

We simulated the spoken query reformulation task as follows. Recall that each
TREC topic had 20 spoken queries. For each topic, we used the top-performing
spoken query to simulate the “reformulated” query and the remaining 19 spoken
queries to simulate different inputs to the system. This produced 250x 19 = 4, 750
instances for training and testing.

While we cast this as a binary classification task, we decided to train a
regression model to predict the difference between the performance of the input
query and the discounted performance of the reformulated query. Our motivation
was to place more emphasis on lower-performing training instances. At test time,
we simply use the sign of the real-valued output to make a binary prediction.
We used the linear SVM regression implementation in the LibLinear toolkit. We

trained different models for different evaluation metrics (AP, NDCG@30, P@10)
and different values of . As in the n-best list re-ranking task, we evaluated using
20-fold cross-validation and assigned all spoken queries for the same TREC topic
to the same fold. Similarly, we report average performance across held-out folds
and measured statistical significance using Fisher’s randomization test [15].

We compare against four different baselines: (1) always making the optimal
choice between the input query and asking for a reformulation (oracle), (2) al-
ways asking for a reformulation (always), (3) never asking for a reformulation
(never), and (4) asking for a reformulation randomly based on the training data
probability that it is the optimal choice (random). The second and third base-
lines are expected to perform well for high values of o (low cost) and low values
of « (high cost), respectively.

7 Results

Results for the n-best list re-ranking task are presented in Table 1. For this task,
we used the n-best lists produced by the AT&T API. Furthermore, we focus
on the subset of 3,414 (out of 5,000) spoken queries for which the AT&T API
returned an n-best list with more than one transcription. The first and last rows
in Table 1 correspond to our two baseline approaches: selecting the top-ranked
candidate from the n-best list (top) and selecting the best-performing candidate
for the corresponding metric (oracle). The middle rows correspond to the LTR
model using all features (all), all features except for those in group x (no.x), and
only those features in group x (only.x).

Table 1. Results for the n-best list re-ranking task. The percentages indicate percent
improvement over top. A * denotes a significant improvement compared to top, and for
no.x and only.x, a ¥ denotes a significant performance drop compared to all. We used
Bonferroni correction for multiple comparisons (p < .05).

AP NDCG@30 P@10

top 0.081 0.148 0.159
alll0.091 (13.75%)* 0.162 (12.50%)* 0.174 (12.26%)*
no.nbest|0.090 (12.50%)*Y 0.162 (12.50%)* 0.173 (11.61%)*Y
no.pre|0.089 (11.25%)*" 0.155 (7.64%)*" 0.166 (7.10%)*¥
no.post|0.085 (6.25%)*” 0.154 (6.94%)*Y 0.168 (8.39%)*"
only.nbest[0.080 (0.00%)Y 0.144 (0.00%)" 0.155 (0.00%)"
((
((
((

only.pre[0.084 (5.00%)*Y 0.154 (6.94%)*Y 0.167 (7.74%)*"
only.post|0.089 (11.25%)*Y 0.155 (7.64%)*" 0.166 (7.10%)*"
oracle[0.102 (27.50%)* 0.186 (29.17%)* 0.205 (32.26%)*

—— =~]~

The results from Table 1 suggest five important trends. First, the LTR model
using all features (all) significantly outperformed the baseline approach of always
selecting the top-ranked transcription from the n-best list (top). The LTR model
using all features had a greater than 10% improvement across all metrics.

Second, our results suggest that both pre- and post-retrieval query perfor-
mance predictors contribute useful evidence for this task. The LTR model using
only pre-retrieval features (only.pre) and only post-retrieval features (only.post)
significantly outperformed the top baseline across all metrics. Furthermore, in

all cases, individually ignoring pre-retrieval features (no.pre) and post-retrieval
features (no.post) resulted in a significant drop in performance compared to the
LTR model using all features (all).

Third, there is some evidence that post-retrieval features were more predic-
tive than pre-retrieval features. In terms of AP, ignoring post-retrieval features
(no.post) and using only pre-retrieval features (only.pre) had the greatest perfor-
mance drop compared to the model using all features (all). In terms of AP, post-
retrieval features were more predictive in spite of having only 5 post-retrieval
features versus 27 pre-retrieval features.

The fourth trend worth noting is that n-best list features contributed little
useful evidence. In most cases, ignoring n-best list features (no.nbest) resulted in
only a small drop in performance compared to the LTR model using all features
(all). Furthermore, the LTR model using only n-best list features (only.nbest)
was the worst-performing LTR model across all metrics and performed at the
same level as the top baseline.

The final important trend is that there is still room for improvement. Across
all metrics, the oracle performance was at least 25% greater than the top baseline.
While not shown in Table 1, the oracle outperformed all the LTR models and
the top baseline across all metrics by a statistically significant margin (p < .05).

Results for the task of predicting when to ask for a spoken query reformu-
lation are shown in Tables 2 and 3. To conserve space, we only show results in
terms of AP. However, the results in terms of NDCG@30 and P@10 had the same
trends. We show results using the most confident transcriptions from the AT&T
API (Table 2) and the WIT.AI API (Table 3). Because the WIT.AI API only
returned the most confident transcription without a confidence value, we ignore
n-best lists features in this analysis. Results are presented for different values of
«, with higher values indicating a higher cost of asking for a reformulation and
therefore fewer cases where it was the correct choice. We show results for our
four baselines (oracle, always, never, and random), as well as the regression model
using all features (all), ignoring pre-retrieval features (no.pre), and ignoring post-
retrieval features (no.post). The performance of never asking for a reformulation
(never) is constant because it is independent of «. The performance of always
asking for a reformulation (always) increases with o (lower cost).

The results in Tables 2 and 3 suggest three important trends. First, the
model using all features (all) performed equal to or better than always, never,
and random for both APIs and all values of o. The model performed at the same
level as never for low values of « (high cost) and at the same level as always
for high values of o (low cost). The model outpormed these three baselines for
values of « in the mid-range (0.4 < « < 0.6). For these values of «, the system
had to be more selective about when to ask for a reformulation. These results
show that pre- and post-retrieval performance predictors provide useful evidence
for predicting when the input spoken query is relatively poor.

Second, post-retrieval features were more predictive than pre-retrieval fea-
tures. This is consistent with the AP results from Table 1. For values of « in the
mid-range, ignoring post-retrieval (no.post) features resulted in a greater drop

in performance than ignoring pre-retrieval features (no.pre). The drop in perfor-
mance was statistically significant for two values of a for the AT&T results and
one value of a for the WIT.AI results. Again, we observed this trend in spite of
having fewer post-retrieval than pre-retrieval features.

Finally, we note that there is room for improvement. For both APIs, the
oracle baseline (oracle) outperformed the model using all features (all) across all
values of a. While not shown in Tables 2 and 3, all differences between oracle
and all were statistically significant (p < .05).

Table 2. Results for predicting when to ask for a spoken query reformulation: AT&T
API, Average Precision. A * denotes a significant improvement compared to always,
never, and random. A ¥ denotes a significant performance drop in for no.pre and no.post
compared to all. We report significance for p < .05 using Bonferroni correction.

discount («)|oracle|always never random| all no.pre no.post
0.1 0.113|0.027 0.102 0.069 | 0.103 |0.102 (-0.97%) 0.102 (-0.97%)
0.2 0.125|0.054 0.102 0.076 |0.108*|0.106 (-1.85%)*" 0.105 (-2.78%)"
0.3 0.138]0.082 0.102 0.092 [0.122*]0.119 (-2.46%)* 0.113 (-7.38%)*7
0.4 0.153(0.109 0.102 0.106 |0.137*|0.135 (-1.46%)* 0.130 (-5.11%)*
0.5 0.168]0.136 0.102 0.126 |0.153*|0.152 (-0.65%)* 0.149 (-2.61%)*
0.6 0.185|0.163 0.102 0.146 [0.172*]0.171 (-0.58%)* 0.167 (-2.91%)*
0.7 0.204|0.191 0.102 0.170 | 0.193 |0.193 (0.00%) 0.191 (-1.04%)
0.8 0.224]0.218 0.102 0.198 | 0.218 |0.218 (0.00%) 0.218 (0.00%)
0.9 0.247]0.245 0.102 0.231 | 0.245 |0.245 (0.00%) 0.245 (0.00%)

Table 3. Results for predicting when to ask for a spoken query reformulation: WIT.AI
API, Average Precision. Symbols * and ¥ denote statistically significant differences as
described in Table 2.

discount («)|oracle|always never random| all no.pre no.post
0.1 0.180]0.031 0.176 0.149 | 0.176 |0.176 (0.00%) 0.176 (0.00%)
0.2 0.186|0.062 0.176 0.142 | 0.176 [0.176 (0.00%) 0.176 (0.00%)
0.3 0.194]0.093 0.176 0.149 | 0.179 |0.178 (-0.56%)* 0.177 (-1.12%)
0.4 0.203]0.124 0.176 0.154 |0.185*|0.182 (-1.62%) 0.180 (-2.70%)
0.5 0.214[0.156 0.176 0.165 |0.1964]0.192 (-2.04%)* 0.188 (-4.08%)AY
0.6 0.227]0.187 0.176 0.182 |0.208*|0.207 (-0.48%)* 0.201 (-3.37%)
0.7 0.243]0.218 0.176 0.203 | 0.225 |0.224 (-0.44%) 0.219 (-2.67%)
0.8 0.261|0.249 0.176 0.229 | 0.250 [0.250 (0.00%) 0.247 (-1.20%)
0.9 0.284]0.280 0.176 0.263 | 0.280 |0.280 (0.00%) 0.280 (0.00%)

8 Discussion

Our results from Section 7 show that the top candidate from an ASR system’s
n-best list is not necessarily the best-performing query and that we can use query
performance predictors to find a lower-ranked candidate that performs better. A
reasonable question is: Why is the most confident candidate not always the best
query? We examined n-best lists where a lower-ranked candidate outperformed
the most confident, and encountered cases belonging to three categories.

In the first category, the lower-ranked candidate was a more accurate tran-
scription of the input speech. For example, the lower-ranked candidate ‘pro-

tect children poison paint’ (AP = 0.467) outperformed the top candidate ‘pro-
tect children poison pain’ (AP = 0.055). Similarly, the lower-ranked candidate
‘prostate cancer detect treat’ (AP = 0.301) outperformed the top candidate
‘press cancer detect treat’ (AP = 0.014). Finally, the lower-ranked candidate
‘drug treat alzheimer successful’ (AP = 0.379) outperformed the top candidate
‘drug treat timer successful’ (AP = 0.001). We do not know why the ASR system
assigned the correct transcription a lower probability. It may be that the cor-
rect query terms (‘paint’, ‘prostate’; ‘alzheimer’) had a lower probability in the
ASR system’s language model than those in the top candidates (‘pain’, ‘press’,
‘timer’). Such errors might be reduced by using a language model from the target
collection. However, this may not be possible with an off-the-shelf ASR system.

In the second category, the user mispronounced an important word associ-
ated with the task. In these cases, the top candidate was a better match with
the input speech, but a lower-ranked candidate had the correct spelling of the
word. For example, the lower-ranked candidate ‘articles lives nobel prize winner’
(AP = 0.289) outperformed the top candidate ‘articles lives noble prize winner’
(AP = 0.007). Here, the participant mispronounced ‘nobel’ as ‘noble’. Similarly,
the lower-ranked candidate ‘welsh devolution movement’ (AP = 0.460) outper-
formed the top candidate ‘welsh deevolution movement’ (AP = 0.050). In this
case, the participant mispronounced ‘devolution’ as ‘de-evolution’.

In the third category, none of the candidates were a perfect transcription of
the input speech, but a lower-ranked candidate had an ASR error that was less
important for the search task. For example, the lower-ranked candidate ‘resend
relations britain argentina’ (AP = 0.443) outperformed the top candidate ‘recent
relations brandon argentina’ (AP = 0.065). The top candidate had ‘brandon’
versus ‘britain’, while the lower-ranked candidate had ‘resend’ versus ‘recent’.
While both candidates had exactly one ASR error and similar confidence values,
the error in the lower-ranked candidate yielded a more effective query for this
task. In fact, one might argue that the lower-ranked candidate describes a more
coherent topic, as indicated by its higher clarity score (3.180 versus 2.612). Cases
in this category possibly arise when the ASR system is tuned to minimize word
error rate [12], without explicitly favoring candidates that describe a coherent
topic with respect to the target collection.

9 Conclusion

We developed and evaluated models for two tasks associated with speech-enabled
search: (1) re-ranking the ASR system’s n-best hypotheses and (2) predicting
when to ask for a spoken query reformulation. Our results show that pre- and
post-retrieval performance predictors contribute useful evidence for both tasks.
With respect to the first task, our analysis shows that lower-ranked candidates
in the n-best list may perform better due to mispronunciation errors in the
input speech or because the ASR system may not explicitly favor candidates

that describe a coherent topic with respect to the target collection.

There are several directions for future work. In this work, we improved the
input query by exploring candidates in the same n-best list. Future work might
consider exploring a larger space, including reformations of the top candidate
that are specifically designed for the speech domain (e.g., term substitutions

with similar Soundex codes). Additionally, in this work, we predicted when to
ask for a new spoken query. Future work might consider learning to ask more
targeted clarification or disambiguation questions about the input spoken query.

Acknowledgments. This work was supported in part by NSF grant 11S-1451668.
Any opinions, findings, conclusions, and recommendations expressed in this pa-
per are the authors and do not necessarily reflect those of the sponsors.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

J. A. Aslam and V. Pavlu. Query hardness estimation using jensen-shannon di-
vergence among multiple scoring functions. In ECIR, 2007.

S. Cronen-Townsend, Y. Zhou, and W. B. Croft. Predicting query performance.
In SIGIR, 2002.

V. Dang, M. Bendersky, and W. B. Croft. Learning to rank query reformulations.
In SIGIR, 2010.

F. Diaz. Performance prediction using spatial autocorrelation. In SIGIR, 2007.
C. Hauff. Predicting the Effectiveness of Queries and Retrieval Systems. disserta-
tion, Univeristy of Twente, 2010.

B. He and I. Ounis. Inferring query performance using pre-retrieval predictors. In
SPIRE, 2004.

J. Jiang, W. Jeng, and D. He. How do users respond to voice input errors?: Lexical
and phonetic query reformulation in voice search. In SIGIR, 2013.

G. Kumaran and V. R. Carvalho. Reducing long queries using query quality pre-
dictors. In SIGIR, 2009.

X. Li, P. Nguyen, G. Zweig, and D. Bohus. Leveraging multiple query logs to
improve language models for spoken query recognition. In ICASSP, 2009.

J. Mamou, A. Sethy, B. Ramabhadran, R. Hoory, and P. Vozila. Improved spoken
query transcription using co-occurrence information. In INTERSPEECH, 2011.
F. Peng, S. Roy, B. Shahshahani, and F. Beaufays. Search results based n-best
hypothesis rescoring with maximum entropy classification. In IEEE Workshop on
Automatic Speech Recognition and Understanding, 2013.

J. Schalkwyk, D. Beeferman, F. Beaufays, B. Byrne, C. Chelba, M. Cohen,
M. Kamvar, and B. Strope. Your word is my command: Google search by voice:
A case study. In Advances in Speech Recognition. 2010.

D. Sheldon, M. Shokouhi, M. Szummer, and N. Craswell. Lambdamerge: Merging
the results of query reformulations. In WSDM, 2011.

A. Shtok, O. Kurland, D. Carmel, F. Raiber, and G. Markovits. Predicting query
performance by query-drift estimation. T'OIS, 30(2), 2012.

M. D. Smucker, J. Allan, and B. Carterette. A comparison of statistical significance
tests for information retrieval evaluation. In CIKM, 2007.

X. Xue, S. Huston, and W. B. Croft. Improving verbose queries using subset
distribution. In CIKM, 2010.

E. Yom-Tov, S. Fine, D. Carmel, and A. Darlow. Learning to estimate query
difficulty: Including applications to missing content detection and distributed in-
formation retrieval. In SIGIR, 2005.

Y. Zhao, F. Scholer, and Y. Tsegay. Effective pre-retrieval query performance
prediction using similarity and variability evidence. In ECIR, 2008.

Y. Zhou and W. B. Croft. Ranking robustness: A novel framework to predict query
performance. In CIKM, 2006.

Y. Zhou and W. B. Croft. Query performance prediction in web search environ-
ments. In SIGIR, 2007.

