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Abstract
Retrieval-Augmented Generation (RAG) systems typically rely on
a single fixed retriever, despite growing evidence that no single re-
triever performs optimally across all query types. In this paper, we
explore a query routing approach that dynamically selects from a
pool of retrievers based on the query, using both train-free heuristics
and learned routing models. We frame routing as a learning-to-rank
(LTR) problem and introduce LTRR, a framework that learns to rank
retrievers by their expected utility gain to downstream LLM per-
formance. Our experiments, conducted on synthetic QA data with
controlled query type variations, show that routing-based RAG sys-
tems can outperform the best single-retriever-based systems. Per-
formance gains are especially pronounced in models trained with
the Answer Correctness (AC) metric and with pairwise learning ap-
proaches, especially with XGBoost. We also observe improvements
in generalization to out-of-distribution queries. As part of the SIGIR
2025 LiveRAG challenge, our submitted system demonstrated the
practical viability of our approach, achieving competitive perfor-
mance in both answer correctness and faithfulness. These findings
highlight the importance of both training methodology and metric
selection in query routing for RAG systems.
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1 Introduction
Retrieval-Augmented Generation (RAG) [28, 30] enhances Large
Language Models (LLMs) by leveraging external knowledge. How-
ever, despite the availability of numerous retrieval models, no single
retriever consistently outperforms others across diverse queries
and corpora [25, 40]. Inspired by distributed information retrieval
and federated search, the research community has recently begun
investigating query routing as a means to address this challenge.

Effective query routing is essential given the complexity intro-
duced by various retrieval methods. Optimal routing can improve
adaptability across query types, thereby enhancing downstream
RAG performance. Additionally, selective routing can help reduce
computational costs by activating only necessary retrievers, includ-
ing potentially bypassing retrieval entirely. Furthermore, modern
retrieval systems increasingly operate as independent, competing
services, effectively forming a search marketplace targeted at ma-
chine consumers (LLMs) [31], making efficient query routing a
timely research.

Existing query routing approaches exhibit several limitations.
Many rely on heuristics [25, 29] or optimize solely for traditional
retrieval metrics intended for human end-users [20], while in the
context of LLM consumers, routing strategies should ideally opti-
mize downstream LLMperformance rather than traditional retrieval

metrics [27, 37]. Additionally, these methods often leverage query-
corpus similarity-based routing [20, 25, 26, 29], which becomes
impractical in uncooperative environments [2], where we do not
have access to the corpus, and the retrievers are assumed to only
provide a search interface (e.g., Model Context Protocol [1]).

In this paper, we proposeLearning toRankRetrievers (LTRR),
a novel query routing approach explicitly optimized for downstream
LLM utility. Unlike previous work, our ranking of retrievers is based
directly on the relative improvement in the LLM’s generation qual-
ity compared to a no-retrieval baseline. This approach inherently
addresses both retriever-selection ("where to query") and retrieval-
necessity ("when to query"), as no-retrieval is explicitly included
as one of the routing options. We comprehensively evaluate mul-
tiple learning-to-rank (LTR) algorithms using diverse query sets,
focusing on retrievers differentiated by retrieval strategies rather
than corpus content. This setting reflects contemporary retrieval
environments, where systems typically utilize similar large-scale
corpora but differ significantly in their retrieval approaches.

Our experiments demonstrate that LTRR algorithms, particularly
those trained using pairwise XGBoost, significantly outperform
the best standard single-retriever-based RAG systems in both in-
distribution and some out-of-distribution evaluations. We present
our system and findings at the SIGIR 2025 LiveRAG Workshop,
where our work was selected for a spotlight talk, and release our
code to encourage further research in this direction.1

2 Related Work
Distributed IR. Our approach to query routing builds on sev-

eral established IR fields, including Distributed Search, Federated
Search, Selective Search, Aggregated Search, and Meta Search. Dis-
tributed search traditionally address the selection of relevant docu-
ment collections based on query relevance, often in a distributed
and disjoint environment [4, 5]. Federated and selective search ex-
tend these ideas, focusing on brokered retrieval across multiple
independent and typically uncooperative systems, employing re-
source representations and selection strategies to effectively route
queries [11, 15]. Aggregated Search similarly aims to integrate di-
verse retrieval results from specialized vertical search services into
a unified search interface, emphasizing the selection of relevant
services per query [2]. Additionally, Meta Search combines results
from several search engines to improve overall relevance, recogniz-
ing that no single search engine consistently outperforms others
across diverse queries [7, 19].

While our query routing methodology shares conceptual simi-
larities with these fields, it uniquely differs in its explicit emphasis
on routing queries to varied retrieval strategies optimized directly
for downstream retrieval-augmented generation (RAG) tasks.

1https://github.com/kimdanny/Starlight-LiveRAG

https://github.com/kimdanny/Starlight-LiveRAG
https://arxiv.org/abs/2506.13743v1
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QueryRouting Strategies. Building on insights from distributed
IR, recent RAG systems increasingly incorporate query routing
strategies. Khramtsova et al. [25] examined various dense retriever
selection methods and identified corpus similarity as a reliable,
training-free criterion. This line ofworkwas extended byKhramtsova
et al. [26], who proposed an unsupervised approach using pseudo-
query generation and LLM-based pseudo relevance judgments to
rank dense retrievers.

Mu et al. [32] proposed a routing strategy that directly predicts
downstream LLM performance, bypassing traditional retrieval ef-
fectiveness metrics. However, this approach overlooks cases where
retrieval may not be beneficial and struggles with the variability
of absolute score prediction across queries. Similarly, Adaptive-
RAG [22] classifies queries by their perceived complexity to select
retrieval strategies, but this relies on human-centric definitions
of complexity and requires curated training data, which may not
align with LLM behavior. Other recent studies expand the space
of query routing. RouterRetriever [29] uses embedding similarities
for retriever selection. Guerraoui et al. [20] introduced RAGRoute,
a lightweight classifier that dynamically selects retrieval sources to
optimize recall and classification accuracy. Tang et al. [38] framed
routing as a contextual multi-armed bandit problem in knowledge
graph-based RAG systems, but without modeling no-retrieval as a
viable option.

Our approach emphasizes learning to rank retrievers based di-
rectly on improvements in downstream LLM utility. It explicitly
includes no-retrieval as a valid action and is evaluated over a diverse
set of retrieval strategies.

3 RAG Method
Multi-Retriever Setup. We utilize Opensearch sparse BM25

and Pinecone dense E5𝑏𝑎𝑠𝑒 retrievers as a base retrievers, and we
combine two reranking strategies with distinct goals to make vari-
ations in retrieval strategies. The first, score regularization [14],
focuses on improving retrieval performance. The second, stochastic
reranking [27], aims to enhance item-fairness and diversity, which
can also improve downstream RAG performance. As a result, we
establish six distinct retrievers: (1) BM25; (2) BM25 + Score Regu-
larization Reranking; (3) BM25 + Stochastic Reranking; (4) E5𝑏𝑎𝑠𝑒 ;
(5) E5𝑏𝑎𝑠𝑒 + Score Regularization Reranking; and (6) E5𝑏𝑎𝑠𝑒 + Sto-
chastic Reranking. Details of reranking methods can be found in
Appendix A.

All retrievers utilize the sampled version of FineWeb corpus (15M
documents)[35], and their retrieval strategies and corpus statistics
remain hidden from both the generator and router (uncooperative
environment).

Query Routing via LTRR. Our RAG framework routes queries
to a suitable retriever R𝑖 from a pool of multiple retrievers 𝐿R . For
each input instance 𝑥 , we generate a query 𝑞 via a query generation
function 𝜙𝑞 (𝑥). The core objective is to route this query to one or
more retrievers that maximize the downstream performance of the
RAG system. Formally, we introduce a router function F that maps
queries to a ranked set of retrievers:

F (𝑞;𝐿R ) → 𝜋𝐿R , (1)

where 𝜋𝐿R is a ranking of retrievers reflecting the predicted utility of
each retriever can give to the downstream generator G for the given
query. In our implementation, we route queries to the top-ranked
retriever using a pairwise XGBoost-based router (chosen for its
empirical effectiveness, as discussed in later sections). Importantly,
we include a ’no-retrieval’ option R0 in the ranking. This allows
the system to bypass retrieval altogether when the router predicts
that relying solely on the language model’s parametric memory
yields the best performance.

Generator. We use Falcon3-10B-Instruct [39] as the generator
in our RAG system. Inspired by recent work on prompting LLMs to
reason with external information [8, 23], we design prompts that
instruct the model to explicitly assess the relevance and utility of
each retrieved passage. Specifically, the model is prompted to reflect
on how to use the passages in a <think> section, followed by its
final answer in a <answer> section. We extract only the content
within the <answer> tag as the system’s output. For ill-formatted
generations, a fallback prompt omitting explicit reasoning is used.
Full prompt details are provided in Appendix B.

4 Learning to Rank Retrievers
We propose Learning to Rank Retrievers (LTRR4LLM), which for-
mulates the routing problem as a learning-to-rank task tailored
specifically to optimize downstream LLM performance.

To first derive the ground-truth retriever rankings required for
training, we measure the utility gain 𝛿𝑖 achieved by retriever R𝑖

relative to the baseline generator performance (without retrieval):

𝛿𝑖 = 𝜇𝑢 (G(𝑥𝑖 ), 𝑦) − 𝜇𝑢 (G(𝑥), 𝑦), (2)

where 𝑥𝑖 = 𝜙𝑝 (𝑥,R𝑖 (𝑞, 𝑘)) with 𝑘 denoting the number of passages
to retrieve, 𝜙𝑝 denoting a prompt construction function for an LLM
G, and 𝜇𝑢 is an arbitrary string utility metric. To ensure compara-
bility across queries, utility-gain scores are min-max normalized
per query into the range of [0,1].

Following the LTR literature [6], LTRR is then characterized by
a scoring function 𝑓 :

𝑓 (Φ(𝑞,R𝑖 )) → R (3)

that assigns a score to each retriever based on query- and retriever-
specific features Φ(𝑞,R𝑖 ) extracted from the 𝑖’th retriever R𝑖 .

To train the ranking model, we experiment with three well-
established approaches (detailed in Appendix C): (1) the pointwise
approach, where the model predicts each retriever’s utility gain 𝛿𝑖
independently using a regression loss; (2) the pairwise approach,
where the model learns to minimize ranking inversions between
retriever pairs based on their relative utility gains compared to the
no-retrieval baseline; and (3) the listwise approach, which directly
optimizes the predicted utility gains over the full set of retrievers
for each query.

4.1 LTR Features
Our setup assumes an uncooperative retrieval environment in which
retrievers do not expose detailed corpus statistics or embedding
model specifications. Thus, we extract a set of query-dependent pre-
retrieval features and query- and retriever-dependent post-retrieval
features to facilitate effective learning-to-rank (LTR) modeling.



LTRR: Learning To Rank Retrievers for LLMs SIGIR’25, July 2025, Padua, Italy

For pre-retrieval features, we include the query representation
(Rdim), query length, and query type. The query representation is a
vector produced by an embedding model, with optional dimension-
ality reduction (e.g., via PCA).2 Query type is determined using a
lightweight classifier that distinguishes between keyword-based
and natural language queries.3 These features are query-specific but
not retriever-specific, allowing LTRR models to learn differences
across queries.

Post-retrieval features, in contrast, are computed after query-
ing all retrievers and are both query- and retriever-specific, provid-
ing the LTRR model with signals to differentiate between retrievers.

Let 𝑧𝑖 = [𝑑𝑖,1, . . . , 𝑑𝑖,𝑘 ] denote the top-k documents retrieved by
retriever R𝑖 , 𝑠 (·, ·) be an embedding-based cosine similarity func-
tion, and𝑀 be the total number of available retrievers. We define
𝑒 (𝑧𝑖 ) = 1

𝑘

∑𝑘
𝑗=1 embed(𝑑𝑖, 𝑗 ) as the aggregated semantic embedding

of the retrieved documents retrieved by R𝑖 . Using these definitions,
we construct the following semantic and statistical features:
• OverallSim: similarity between query and the aggregated em-
bedding of retrieved documents, 𝑠 (𝑞, 𝑒 (𝑧𝑖 )),

• AvgSim: average similarity score between query and individual
retrieved documents, avg𝑗 (𝑠 (𝑞, 𝑑𝑖, 𝑗 )),

• MaxSim: maximum similarity score between query and individ-
ual retrieved documents, max𝑗 (𝑠 (𝑞, 𝑑𝑖, 𝑗 )),

• VarSim: variance of retrieval similarity scores, var𝑗 (𝑠 (𝑞, 𝑑𝑖, 𝑗 )),
capturing retrieval confidence dispersion,

• Moran: Moran coefficient [13], which measures semantic auto-
correlation among retrieved documents in alignment with the
cluster hypothesis, and

• CrossRetSim: average semantic similarity of the current re-
triever’s result set with those from other retrievers, defined as
1

𝑀−1
∑𝑀
𝑚;𝑚≠𝑖 𝑠 (𝑒 (𝑧𝑖 ), 𝑒 (𝑧𝑚)), which can indicate a uniqueness

of a ranking compared to other rankings from other retrievers.
For the no-retrieval option (R0), only pre-retrieval features are

available. To maintain consistent feature dimensionality across
retrievers, we handle missing post-retrieval features differently de-
pending on the model type. For neural LTR models, we introduce a
dedicated learnable parameter vector to represent the post-retrieval
feature space of R0. This vector is randomly initialized and opti-
mized during training, allowing the model to implicitly encode the
characteristics of the no-retrieval strategy. For non-neural models,
we apply median imputation based on the training data to fill in
the missing post-retrieval features, ensuring compatibility with
fixed-length feature inputs.

5 Experiment
We evaluate our proposed routing approaches against a range of
baseline and train-free routing models.

5.1 Routing Models
We first consider five heuristic, train-free routing models, each
based on a post-retrieval feature: OverallSim, AvgSim, MaxSim,
VarSim (where lower variance is preferred), and Moran.

2We use the E5𝑏𝑎𝑠𝑒 model to extract query embeddings, which are then reduced to 32
dimensions using PCA. For DeBERTa-based models, however, we retain the original,
non-reduced embeddings.
3https://huggingface.co/shahrukhx01/bert-mini-finetune-question-detection

For learned routing models trained via the LTRR framework, we
evaluate eleven models spanning the pointwise, pairwise, and
listwise paradigms. In the pointwise and pairwise settings, we
train models using XGBoost [9], SVM𝑟𝑎𝑛𝑘 [24], a feedforward net-
work (FFN), and DeBERTa [21]. In the listwise setting, we evaluate
ListNet [6], LambdaMart [42], and DeBERTa-based models.

All LTRRmodels are trained using utility labels derived from two
metrics: BEM [3] and Answer Correctness (AC) [17], both shown
to correlate strongly with human evaluations in RAG setting [34].

5.2 Datasets
We generate a synthetic dataset using DataMorgana [18], enabling
fine-grained control over question and user characteristics. Ques-
tion configurations include four dimensions: answer type, premise,
phrasing, and linguistic variation. User configurations are based on
expertise level (expert vs. novice). Full dataset generation details
are provided in Appendix D.

For our LTRR experiments, we focus on the answer-type cate-
gory, which comprises five distinct question types: factoid, multi-
aspect, comparison, complex, and open-ended.4

We construct five dataset splits for evaluation. The Balanced
split includes all question types proportionally in both training
and test sets. Four unseen type splits (multi-aspect, comparison,
complex, and open-ended) each hold out one question type from
training and use it exclusively for testing, enabling us to assess
model generalization to unseen query types. Dataset statistics are
reported in Appendix E.

6 Results and Discussion
RQ1: Do routing-based RAG systems outperform the best-

performing standard RAG model? To study this question, we
first identify the best-performing single-retriever (standard) RAG
system for each dataset under the two utility metrics. Their down-
stream scores are shown in the ‘Best Standard RAG’ row of Table 1
(see Appendix F for details).

As shown in Table 1, the train-free routing models did not yield
statistically significant improvements over the best-performing
standard RAG systems, despite showing some numerical gains. In
contrast, the LTRR-based models demonstrated more substantial
improvements, particularly with the pointwise SVM𝑟𝑎𝑛𝑘 and De-
BERTa, as well as the pairwise XGBoost and DeBERTa models,
which achieved statistically significant gains on the Balanced split.

However, performance gains were noticeably higher for router
models trained using the AC utility metric compared to those
trained with BEM. Statistically significant improvements were ob-
served only for AC-based routers (highlighted in bold), while no
such gains were found for BEM-based models. We attribute this dis-
crepancy to differences in metric reliability: although both BEM and
AC correlate well with human judgments, prior work shows that
AC consistently achieves stronger alignment [34]. Since LTRR mod-
els are trained directly on utility labels, the choice of a consistent
and accurate metric is critical.

RQ2: Do LTRR-based routing algorithms outperform the
best-performing train-free routing model? We also examined

4Complex question type is configured in user configuration under expert user category.

https://huggingface.co/shahrukhx01/bert-mini-finetune-question-detection
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BEM-based AC-based

Model Balanced Unseen
multi-aspect

Unseen
comparison

Unseen
complex

Unseen
open-ended Balanced Unseen

multi-aspect
Unseen

comparison
Unseen
complex

Unseen
open-ended

Oracle-Router 0.5753 0.3401 0.5217 0.5799 0.5601 0.7948 0.7802 0.7831 0.7978 0.7852
Best Standard RAG 0.3599 0.1941 0.3074 0.3595 0.3465 0.5776 0.5809 0.5723 0.5812 0.5784
OverallSim-Router 0.3474 0.1874 0.3004 0.3458 0.3261 0.5722 0.5835 0.5689 0.5668 0.5658

AvgSim-Router 0.3542 0.1855 0.2995 0.3454 0.3438 0.5855 0.5871 0.5724 0.5825 0.5739
MaxSim-Router 0.3623 0.1913 0.3161 0.3591 0.3521 0.5872 0.5777 0.5753 0.5891 0.5775
VarSim-Router 0.3307 0.1864 0.3082 0.3255 0.2941 0.5593 0.5811 0.5553 0.5603 0.5450
Moran-Router 0.3304 0.1880 0.3083 0.3255 0.2941 0.5603 0.5840 0.5535 0.5596 0.5462
𝑋𝐺𝐵𝑜𝑜𝑠𝑡𝑝𝑜𝑖𝑛𝑡 0.3444 0.1915 0.3065 0.3519 0.3318 0.5760 0.5925 0.5698 0.5790 0.5885
𝑆𝑉𝑀𝑅𝑎𝑛𝑘𝑝𝑜𝑖𝑛𝑡 0.3548 0.1894 0.3167 0.3624 0.3284 0.5903 0.5815 0.5779 0.5899 0.5885

𝐹𝐹𝑁𝑝𝑜𝑖𝑛𝑡 0.3528 0.1894 0.3039 0.3397 0.3211 0.5760 0.5901 0.5650 0.5854 0.5529
𝐷𝑒𝐵𝐸𝑅𝑇𝑎𝑝𝑜𝑖𝑛𝑡 0.3604 0.1911 0.3064 0.3590 0.3387 0.5884 0.5847 0.5762 0.5925 0.5863
𝑋𝐺𝐵𝑜𝑜𝑠𝑡𝑝𝑎𝑖𝑟 0.3626 0.1909 0.3094 0.3625 0.3504 0.5900 0.5769 0.5759 0.6017 0.5930
SVM𝑟𝑎𝑛𝑘

𝑝𝑎𝑖𝑟 0.3657 0.1883 0.2943 0.3643 0.3605 0.5329 0.5842 0.5695 0.5377 0.5791
𝐹𝐹𝑁𝑝𝑎𝑖𝑟 0.3575 0.1892 0.3015 0.3654 0.3457 0.5831 0.5872 0.5814 0.5798 0.5869

𝐷𝑒𝐵𝐸𝑅𝑇𝑎𝑝𝑎𝑖𝑟 0.3634 0.1956 0.3083 0.3654 0.3445 0.5888 0.5805 0.5777 0.5912 0.5851
𝐿𝑖𝑠𝑡𝑁𝑒𝑡𝑙𝑖𝑠𝑡 0.3530 0.1934 0.3032 0.3398 0.3254 0.5848 0.5836 0.5718 0.5847 0.5818

𝐿𝑎𝑚𝑏𝑑𝑎𝑀𝐴𝑅𝑇𝑙𝑖𝑠𝑡 0.3450 0.1959 0.2934 0.3631 0.3229 0.5802 0.5812 0.5483 0.5690 0.5662
𝐷𝑒𝐵𝐸𝑅𝑇𝑎𝑙𝑖𝑠𝑡 0.3235 0.1825 0.3005 0.3470 0.2736 0.5829 0.5902 0.5556 0.5434 0.5751

Table 1: Average downstream RAG utility measured by either BEM or AC when the test queries are routed to the top retriever
based on the routing model. Bold: statistically significant improvement over the best standard RAG system according to the
paired Wilcoxon signed-rank tests with bonferroni correction.

whether trained routing models (LTRR-based) outperform the high-
est train-free baselines. As in RQ1, numerical results indicate that
LTRR models generally outperform the strongest train-free routers
(usually MaxSim). However, statistical significance tests revealed
that these improvements were not significant after correction. This
suggests that the observed gains may be subject to variability and
underscores the need for larger-scale studies or refined methods to
more conclusively demonstrate the advantages of trained routing
over train-free approaches.

RQ3:Are the performance improvements from routing-based
RAG models robust across the different unseen query-type
splits? We investigated the robustness of performance improve-
ments across various unseen query types (multi-aspect, comparison,
complex, open-ended). While train-free routing models showed
relatively modest improvements across these splits, LTRR-based
trained routing algorithms displayed more stable and consistent
performance gains. In particular, the pairwise XGBoost routers
trained on the AC utility metric showed the most consistent out-
performance over the standard RAG and train-free baselines across
different unseen datasets, achieving statistically significant results
in the complex and open-ended query splits.

Discussion and Implications. Our findings underscore that
not all routing improvements are created equal. While LTRRmodels
often outperform standard and train-free routing methods numeri-
cally, only a subset achieve statistically significant gains, particu-
larly those trained with the AC utility metric. This confirms that
metric choice is not merely a technical detail, but a determinant
of learning signal quality. Moreover, the effectiveness of pairwise
training (especially with tree-based models like XGBoost) suggests
that explicitly modeling retriever tradeoffs per query offers a more
robust inductive bias than listwise or pointwise formulations. The
observed performance robustness of LTRR across unseen question

types further indicates that routing functions can generalize be-
yond their training distribution. This points to the potential of query
routing as a critical component in adaptive retrieval architectures,
especially for long-tailed or evolving query scenarios. Notably, our
system is built entirely on lightweight, cost-effective retrievers and
a computationally efficient routing model, but still achieves mean-
ingful gains, showing that even modest setups can benefit from
query routing. Finally, since LTRR produces a full ranking over
retrievers, it naturally supports future extensions to multi-retriever
selection, where retrieved results can be fused to enhance coverage
and diversity [10]. We leave this extension for future work.

7 Conclusion
We introduce LTRR, a query routing framework that learns to
rank retrievers based on their downstream utility to large language
models. Our empirical results show that RAG systems equipped
with trained routers—particularly those using the AC utility metric
and pairwise learning-to-rank algorithms such as XGBoost—can
outperform standard single-retriever RAG systems and generalize
to unseen query types. These findings highlight the importance
of utility-aware retriever selection and demonstrate that learning-
based query routing offers a promising path toward more robust
and adaptable RAG systems. In the SIGIR 2025 LiveRAG challenge,
our team Starlight submitted a RAG system equipped with the
pairwise XGBoost-based router. The system achieved a Correctness
score of 0.818 and a Faithfulness score of 0.433.
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A Reranking Methods
Query-Time Score Regularization. Based on the cluster hypothesis in IR, query-time score regularization [12, 14] adjusts retrieval

scores so that semantically similar documents receive similar relevance scores. Score regularization can be seen as a generalization of
pseudo-relevance feedback (PRF), a well-established method for improving retrieval performance [36, 41]. However, unlike PRF, which
modifies query representations, score regularization directly refines retrieval scores. Although shown to improve retrieval performance, it
remains underexplored in dense retrieval and especially in a RAG setup.

Reranking procedure is as follows:

(1) Initial Retrieval: Pinecone is queried, returning 𝑘 documents and their 𝑛-dim embeddings, {𝑑𝑖 }𝑘𝑖=1.
(2) Similarity Matrix: From a matrix 𝐷 ∈ R𝑘×𝑛 , where each row is 𝑑𝑖 , we compute a similarity matrix𝑊 = 𝐷𝐷𝑇 ∈ R𝑘×𝑘 .
(3) Row-Stochastic Matrix: For each row of𝑊 , we keep top-𝑚 similarities, normalize to sum to 1, yielding a row-stochastic matrix 𝑃 .
(4) Regularized Scores: Given an original score vector 𝑠 ∈ R𝑘×1, we define 𝑠 = 𝑃𝑡𝑠 , where 𝑡 controls the strength. We then rerank

documents by 𝑠 , enhancing clusters of semantically similar passages.

Stochastic Reranking. Stochastic retrieval uses Plackett-Luce sampling [33] on the initial score distribution to promote item-fairness
[16]. As shown by Kim and Diaz [27], this can boost item-fairness in RAG systems and potentially enhance downstream QA performance. In
our reranking, we randomly select one ranking from the 50 sampled rankings, where sampling intensity parameter is set to 2.

B Falcon Prompts
• {INFO_PROMPT} is first constructed by iterating through the retrieved documents by filling in the following template:
Document {DOC_i}: {TEXT}.

• Fallback prompt is selected when the generator produces an ill-formatted output (e.g., no <answer> tag exists).
• Non-RAG prompt is selected when the router selects R0 and no external information is retrieved.

B.1 RAG Reasoning Prompt

You must answer a user question, based on the information (web documents) provided. Before answering the question, you must
conduct your reasoning inside <think> and </think>. During this reasoning step, think about the intent of the user’s question and
focus on evaluating the relevance and helpfulness of each document to the question. This is important because the information
comes from web retrieval and may include irrelevant content. By explicitly reasoning through the relevance and utility of each
document, you should seek to ensure that your final answer is accurate and grounded in the pertinent information. After that, think
step by step to get to the right answer. Generation format: you need to surround your reasoning with <think> and </think>, and
need to surround your answer with <answer> and </answer>. For example: <think> your reasoning </think>; <answer> your
answer </answer>.
User Question: {QUESTION}
Information: {INFO_PROMPT}
Show your reasoning between <think> and </think>, and provide your final answer between <answer> and </answer>.

B.2 RAG Fallback Prompt

Using the information provided below, please answer the user’s question. Consider the intent of the user’s question and focus on
the most relevant information that directly addresses what they’re asking. Make sure your response is accurate and based on the
provided information.
Question: {QUESTION}
Information: {INFO_PROMPT}
Provide a clear and direct answer to "{QUESTION}" based on the information above.
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B.3 Non-RAG Reasoning Prompt

You must answer the given user question enclosed within <question> and </question>. Before answering the question, you must
conduct your reasoning inside <think> and </think>. During this reasoning step, think about the intent of the user’s question then
think step by step to get to the right answer. Generation format: you need to surround your reasoning with <think> and </think>,
and need to surround your answer with <answer> and </answer>. For example: <think> your reasoning </think>; <answer> your
answer </answer>.
User Question: {QUESTION}
Show your reasoning between <think> and </think>, and provide your final answer between <answer> and </answer>.

B.4 Non-RAG Fallback Prompt

Answer the following question with ONLY the answer. No explanations, reasoning, or additional context.
Question: {QUESTION}

C LTRR Loss Functions
Pointwise Approach. Each retriever’s utility gain 𝛿𝑖 is independently predicted by minimizing a regression loss:

𝐿𝑝𝑜𝑖𝑛𝑡 (𝑓 ) =
∑︁
𝑞∈Q

∑︁
𝑖

(𝛿𝑖 − 𝑓 (Φ(𝑞,R𝑖 )))2 . (4)

Pairwise Approach. The model learns from pairwise comparisons between retrievers, minimizing ranking inversions through a pairwise
loss, where ranking preference (R𝑖 ≻𝑞 R 𝑗 ) is determined based on the relative utility gain each retriever provides to the RAG system
compared to the no-retrieval baseline:

𝐿𝑝𝑎𝑖𝑟 (𝑓 ) =
∑︁
𝑞∈Q

∑︁
R𝑖≻𝑞R 𝑗

I
[
𝑓 (Φ(𝑞,R𝑖 )) < 𝑓 (Φ(𝑞,R 𝑗 ))

]
. (5)

Listwise Approach. The model directly optimizes the predicted utility gains across all retrievers for each query. With 𝑃𝑖 and 𝑄𝑖 being the
probability distribution over rankings based on utility-gain and model prediction, we define the listwise loss as:

𝐿𝑙𝑖𝑠𝑡 (𝑓 ) =
∑︁
𝑞∈Q

∑︁
𝑖

−𝑃𝑖 (𝛿𝑖 )𝑙𝑜𝑔(𝑄𝑖 (𝑓 (Φ(𝑞,R𝑖 )))). (6)
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D Dataset Generation via DataMorgana
Table 2 describes question type configurations, and Table 3 describes user type configuration for dataset generation using DataMorgana [18].

Categorization Category Prob Description

Answer Type
factoid 0.4 a question seeking a specific, concise piece of information or a fact about a

particular subject.

multi-aspect 0.2 A question about two different aspects of the same entity/concept. For example:
‘What are the advantages of AI-powered diagnostics, and what are the associated
risks of bias in medical decision-making?’, ‘How do cryptocurrencies enable
financial inclusion, and what are the security risks associated with them?’. The
information required to answer the question needs to come from two documents,
specifically, the first document must provide information about the first aspect,
while the second must provide information about the second aspect.

comparison 0.2 a comparison question that requires comparing two related concepts or entities.
The comparison must be natural and reasonable, i.e., comparing two entities
by a common attribute which is meaningful and relevant to both entities. For
example: ’Who is older, Glenn Hughes or Ross Lynch?’, ‘Are Pizhou and Jiujiang
in the same province?’, ‘Pyotr Ilyich Tchaikovsky and Giuseppe Verdi have this
profession in common’. The information required to answer the question needs
to come from two documents, specifically, the first document must provide
information about the first entity/concept, while the second must provide infor-
mation about the second entity/concept.

open-ended 0.2 a question seeking a detailed or exploratory response, encouraging discussion
or elaboration.

Premise
without-premise 0.7 a question that does not contain any premise or any information about the user.

with-premise 0.3 a question starting with a very short premise, where the user reveals one’s needs
or some information about himself.

Phrasing
concise-and-natural 0.25 a concise, direct, and natural question consisting of a few words.

verbose-and-natural 0.25 a relatively long question consisting of more than 9 words.

short-search-query 0.25 a question phrased as a typed web query for search engines (only keywords,
without punctuation and without a natural-sounding structure). It consists of
less than 7 words.

long-search-query 0.25 a question phrased as a typed web query for search engines (only keywords
without punctuation and without a natural-sounding structure). It consists of
more than 6 words.

Linguistic Variation
similar-to-document 0.5 a question that is written using the same or similar terminology and phrases

appearing in the documents.

distant-from-document 0.5 a question that is written using the terms completely different from the ones
appearing in the documents.

Table 2: Question categorizations and descriptions.

Categorization Category Prob Description

User Expertise
expert 0.4 an expert on the subject discussed in the documents, therefore he asks complex questions.

novice 0.6 a person with basic knowledge on the topic discussed in the documents, therefore, he asks
non-complex questions.
Table 3: User categorization and descriptions.
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E Data Statistics
Table 4 shows statistics of training and test data from the DataMorgana-generated dataset.

Train Test

Balanced 7,995 1999
multi-aspect 6442 410
comparison 6457 385
complex 4751 787
open-ended 6345 411

Table 4: The number of queries in each dataset for training and testing LTRR algorithms.

F Standard RAG Performance
Table 5 shows the average downstream utilities of standard RAG models. Models with the highest utility value were selected as the ‘Best
Standard RAG’ models in Table 1.

BEM-based AC-based

Model Balanced Unseen
multi-aspect

Unseen
comparison

Unseen
complex

Unseen
open-ended Balanced Unseen

multi-aspect
Unseen

comparison
Unseen
complex

Unseen
open-ended

BM25 0.3599 0.1826 0.3034 0.3595 0.3430 0.5769 0.5656 0.5706 0.5812 0.5711
BM25+Stochastic 0.3302 0.1796 0.3046 0.3252 0.3042 0.5510 0.5688 0.5469 0.5543 0.5424
BM25+Regularize 0.3539 0.1893 0.3061 0.3559 0.3350 0.5776 0.5696 0.5723 0.5790 0.5749

E5 0.3538 0.1941 0.3074 0.3496 0.3465 0.5769 0.5791 0.5711 0.5782 0.5784
E5+Stochastic 0.3258 0.1855 0.3049 0.3252 0.3002 0.5503 0.5805 0.5483 0.5417 0.5546
E5+Regularize 0.3418 0.1829 0.2991 0.3490 0.3083 0.5694 0.5809 0.5692 0.5756 0.5620

Table 5: Average downstream utility measured by either BEM or AC of standard RAG systems with a single retriever model.
Boldface indicates the highest average downstream utility value.
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