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Abstract

Preference learning has gained significant attention in tasks
involving subjective human judgments, such as speech emo-
tion recognition (SER) and image aesthetic assessment.
While pairwise frameworks such as RankNet offer robust
modeling of relative preferences, they are inherently limited
to local comparisons and struggle to capture global rank-
ing consistency. To address these limitations, we propose
RankList, a novel listwise preference learning framework that
generalizes RankNet to structured list-level supervision. Our
formulation explicitly models local and non-local ranking
constraints within a probabilistic framework. The paper in-
troduces a log-sum-exp approximation to improve training
efficiency. We further extend RankList with skip-wise com-
parisons, enabling progressive exposure to complex list struc-
tures and enhancing global ranking fidelity. Extensive exper-
iments demonstrate the superiority of our method across di-
verse modalities. On benchmark SER datasets (MSP-Podcast,
IEMOCAP, BIIC Podcast), RankList achieves consistent im-
provements in Kendall’s Tau and ranking accuracy compared
to standard listwise baselines. We also validate our approach
on aesthetic image ranking using the Artistic Image Aesthet-
ics dataset, highlighting its broad applicability. Through ab-
lation and cross-domain studies, we show that RankList not
only improves in-domain ranking but also generalizes better
across datasets. Our framework offers a unified, extensible ap-
proach for modeling ordered preferences in subjective learn-
ing scenarios.

Introduction

Ranking is a central problem in machine learning, especially
in tasks where the goal is to order items based on subjec-
tive or contextual criteria. Unlike classification or regression,
where absolute labels are predicted, ranking methods model
relative orderings, making them better suited for tasks such
as retrieval, recommendation, and subjective assessments
(Liu et al. 2009). This study aims to predict full global rank-
ings, where the relative ordering of all items is of interest.

Global optimization contrasts with many existing meth-
ods in several ways. Traditional learning-to-rank (LTR)
methods are generally categorized as pointwise, pairwise,
or listwise. Pointwise methods treat ranking as indepen-
dent regression or classification problems (Li, Lin, and Li
2007), which often ignore inter-item dependencies and fail
to model ordinal structure effectively. Pairwise approaches

such as RankNet (Burges et al. 2005) attempt to minimize
inversions by learning relative preferences between sample
pairs, but they inherently focus only on local relationships
and can miss global ranking structure (Joachims 2002; Her-
brich, Graepel, and Obermayer 2000). Although listwise
methods aim to overcome these limitations by directly op-
timizing over entire ranked lists, these methods often fo-
cus on objectives that emphasize the accuracy at the top
of the ranked list. Notable examples include ListNet (Cao
et al. 2007), ListMLE (Xia et al. 2008), and ApproxNDCG
(Qin, Liu, and Li 2010), which capture inter-item dependen-
cies and often align more closely with ranking evaluation
metrics. However, these methods often rely on permutation-
based formulations or metric-specific surrogates (Cao et al.
2007; Xia et al. 2008; Qin et al. 2008; Burges 2010), which
are tightly coupled to retrieval-oriented objectives and may
not generalize well to perceptual ranking tasks. For exam-
ple, in ranking speech samples by valence, accurate order-
ing across the entire list is essential, not just the top-ranked
items. Furthermore, in subjective assessment tasks such as
emotion recognition or aesthetic assessment, predicting the
relative ranking of samples often provides a more stable and
interpretable alternative to regressing on absolute consensus
scores, which are known to be noisy and subjective (Yan-
nakakis, Cowie, and Busso 2017; Parthasarathy, Lotfian, and
Busso 2017). Additionally, existing listwise models are not
well tailored to applications involving sparse and implicitly
ordered preferences.

To address the challenges of current listwise methods, we
introduce a novel listwise preference learning formulation
that extends RankNet’s pairwise loss into a robust list-level
loss. Our proposed loss considers both adjacent and skip-
connected pairs within an ordered list, capturing both lo-
cal and global relational constraints. We introduce a log-
sum-exp approximation to enable efficient optimization. The
RankList framework, which combines these strategies, im-
proves training stability and listwise generalization without
explicit permutation-based modeling. While prior listwise
models have been developed for traditional LTR benchmarks
(e.g., web search), such datasets emphasize top-heavy met-
rics and assume consistent rank positions; these settings are
not consistent with the needs of perceptual ranking, where
global performance is emphasized. Therefore, our experi-
ments investigate RankList on two perceptual ranking tasks:
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speech emotion recognition (SER) and aesthetic image qual-
ity assessment. Within corpus and cross-corpus experiments
on diverse benchmarks, including the MSP-Podcast (Lot-
fian and Busso 2019), BIIC-Podcast (Upadhyay et al. 2023),
IEMOCAP (Busso et al. 2008), and MSP-IMPROV (Busso
et al. 2017) databases, demonstrate that RankList consis-
tently outperforms pairwise and listwise baselines, show-
ing superior generalization across SER tasks. RankList pro-
duced performance gains of approximately 11% and 7.5%
relative improvement in Kendall’s Tau over RankNet (pair-
wise) and the best-performing listwise baseline, respectively.
The approach is validated in the task of artistic image aes-
thetics assessment, showing the generalization of the pro-
posed formulation.

• We propose RankList, a simple but effective listwise
framework building on the RankNet strategy that in-
tegrates adjacent and skip-wise comparisons to model
structured ranking constraints.

• We propose a log-sum-exp approximation to enable
efficient and stable training, avoiding the need for
permutation-based modeling.

• RankList achieves SOTA results on SER and aesthetic
image ranking, outperforming strong pairwise and list-
wise baselines while remaining scalable.

Background

Early listwise approaches such as ListNet (Cao et al. 2007)
and ListMLE (Xia et al. 2008) introduced probabilistic mod-
eling over permutations or maximum likelihood over ranked
sequences. These formulations provided better alignment
with ranking evaluation metrics but introduced significant
computational overhead due to their reliance on full list per-
mutations. To address efficiency and stability concerns, later
methods such as SoftRank (Taylor et al. 2008), Approx-
NDCG (Qin, Liu, and Li 2010), and LambdaMART (Wu
et al. 2010) introduced surrogate losses or gradient approx-
imations tailored to optimize specific metrics such as nor-
malized discounted cumulative gain (NDCG), and mean av-
erage precision (MAP). PiRank (Swezey et al. 2021) intro-
duced differentiable approximations to sorting operators to
enable end-to-end training with ranking losses. Such metric-
driven losses are optimized for retrieval-focused criteria that
prioritize top-ranked accuracy, making them less effective
for tasks demanding ordinal consistency over the entire list.

To move beyond these metric-bound constraints, re-
cent work has explored alternative formulations such as
neighborhood-based contrastive learning. Notably, Rank-n-
Contrast (RnC) (Zha et al. 2023) proposes learning smooth
representations for regression and ranking by constructing
local ranking neighborhoods and using contrastive losses to
preserve relative order. While RnC is not a traditional LTR
method and does not optimize a list-level ranking loss di-
rectly, it demonstrates how leveraging neighborhood struc-
ture can be beneficial for learning in low-resource or am-
biguous domains. However, it still lacks an explicit listwise
formulation and does not leverage sequential ordering con-
straints critical for structured ranking tasks.

Methodology

In this section, we present a detailed formulation of our pro-
posed listwise preference learning framework, building ex-
plicitly on the RankNet pairwise preference learning model.
The primary goal is to extend RankNet’s pairwise loss for-
mulation to a comprehensive listwise setting, capturing both
local and global ranking relationships.

Problem Setup and Notation

Let us consider a set of N samples represented by their cor-
responding feature vectors (Φ1,Φ2, . . . ,ΦN ), which are ar-
ranged in descending order according to an attribute given
by the ground-truth ranking. Our objective is to learn a con-
tinuous scoring function: f : Rd → R that maps each fea-
ture vector Φi ∈ R

d into a scalar score si = f(Φi) such that
the relative ordering of these scores accurately reflects the
ground-truth ranking of the samples.

Cost Function for Pairwise RankNet

RankNet (Burges et al. 2005) uses a probabilistic framework
to model the relative preference between two samples. The
labels correspond to relative preference between pairs of
samples (i.e., sample i is preferred over sample j for a given
attribute). Given a pair of samples (xi, xj) with correspond-
ing feature vectors Φi and Φj , their respective preference
scores are computed as si = f(Φi) and sj = f(Φj). The
probability of preferring sample xi over sample xj is mod-
eled using a sigmoid function:

Pij =
1

1 + e−σ(si−sj)
, (1)

where σ is a scaling parameter controlling the steepness of
the sigmoid function. During training, RankNet minimizes
the cross-entropy loss between the predicted preferencesPij

and ground-truth binary preferences P̄ij , defined as:

P̄ij =

{

1 if xi is preferred over xj ,

0 otherwise.
(2)

The cross-entropy loss CR for a pair of samples (xi, xj)
is:

CR = −P̄ij logPij − (1 − P̄ij) log(1− Pij) (3)

=

{

log
(

1 + e−σ(si−sj)
)

if P̄ij = 1,

log
(

1 + e−σ(sj−si)
)

if P̄ij = 0.
(4)

Proposed RankList Preference Learning Cost

This study extends RankNet to a listwise scenario. We con-
sider an ordered list of N random samples (i.e., s1 > s2 >
. . . > sN ) and their corresponding preference scores:

s1 = f(Φ1), s2 = f(Φ2), . . . , sN = f(ΦN). (5)

To explicitly model local ordering constraints, we define
pairwise differences between adjacent scores as:

Oi(i+1) = si − si+1, for i ∈ {1, 2, . . . , N − 1}. (6)
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Applying RankNet’s cost function to these adjacent pairs,
the local pairwise loss for each adjacent pair (i, i + 1) is
defined as:

Li = log
(

1 + e−σOi(i+1)
)

. (7)

Aggregating these local pairwise losses, the total listwise
preference learning cost is given by:

Llistwise =
N−1
∑

i=1

Li =
N−1
∑

i=1

log
(

1 + e−σ(si−si+1)
)

. (8)

This cost function only considers pairwise relations be-
tween adjacent samples in the list. To improve the model’s
capability of capturing global ranking relationships beyond
adjacent pairs within the selected list, we extend the above
formulation by incorporating skip-term comparisons be-
tween non-adjacent samples. These additional comparisons
capture broader contextual information within each list.
Specifically, we define skip-k term differences:

Oi(i+k) = si−si+k+1, for k ≥ 1 and i ≤ N−k−1. (9)

This formulation leads to a generalized listwise loss func-
tion that includes both adjacent and non-adjacent (skip) term
penalties:

Lextended =

K
∑

k=0

N−k−1
∑

i=1

log
(

1 + e−σOi(i+k+1)
)

, (10)

where K is a hyperparameter determining the maximum
number of skip levels included (e.g., K = 2 includes both
skip-1 and skip-2 comparisons). The above equation can
equivalently be expressed in product form as:

Lextended = log

(

K
∏

k=0

N−k−1
∏

i=1

(

1 + e−σOi(i+k+1)
)

)

. (11)

While the gradient of Lextended is Lipschitz continuous,
since it is a finite sum of smooth functions such as log(1 +
e−z), its Lipschitz constant is unbounded with respect to
both the number of skip levels K and the list length N .
Specifically, the gradient magnitude can grow linearly with
N ×K , leading to poor conditioning. The additive structure
of gradients in Lextended causes local noise or misordering
to directly affect the magnitude and direction of the overall
gradient.

To mitigate this issue, we approximate the sum of logarith-
mic losses with a log-sum-exp formulation, which performs
a soft aggregation of pairwise ranking terms. This simplifi-
cation allows us to balance the contributions of each term in
a numerically stable way, while bounding the gradient mag-
nitude. The extended sum can be written as:

Lextended = log
[

(1 + e−σO12)(1 + e−σO23)(1 + e−σO34 ) . . .

(1 + e−σO13)(1 + e−σO24)(1 + e−σO35 ) . . .
]

(12)

Expanding the above product inside the logarithm yields
a series of additive terms due to multiplication:

Lextended = log
[

1 +

K
∑

k=0

N−k−1
∑

i=1

e−σOi(i+k+1)

+
∑

(i,j)
(k1,k2)

e−σ(Oi(i+k1+1)+Oj(j+k2+1)) + · · ·
]

(13)
To simplify computation and gradient analysis, we ap-

proximate the product by retaining only the first-order addi-
tive terms (i.e., the individual exponentials) and discarding
higher-order interactions between comparisons (see supple-
mental material for a discussion on the implications of this
truncation). This simplification leads to our final approxima-
tion:

LRankList = log

(

1 +

K
∑

k=0

N−k−1
∑

i=1

e−σOi(i+k+1)

)

(14)

By incorporating both adjacent and skip-term compar-
isons within a unified log-sum-exp framework, LRankList of-
fers bounded and smooth optimization dynamics. It pre-
serves ranking fidelity through softly normalized pairwise
interactions, avoiding unbounded gradient growth and insta-
bility.

An alternative approach could involve normalizing
Lextended with a factor such as 1

NK
to control gradient

scale. However, this uniform averaging treats all compar-
isons equally, which also dilutes the influence of more infor-
mative gradients during training. In contrast, the log-sum-
exp approximation acts as a soft surrogate of the max, en-
abling softmax-like prioritization of difficult (misordered)
comparisons. This formulation helps preserve stronger and
more stable gradient flow, whereas uniform averaging can
lead to vanishing gradients due to the contribution of many
small near-zero terms.

Theorem 1 (Smoothness and Bounded Gradient ofLRankList).
The approximate listwise loss LRankList, defined in Equation
14 is Lipschitz continuous, and its gradient is also Lipschitz
continuous. Furthermore, the gradient norm is uniformly
bounded, independent of the list size N and skip parameter
K , unlike the extended loss formulation.

Proof. Let us denote

Z =

K
∑

k=0

N−k−1
∑

i=1

e−σOi(i+k+1) , so that LRankList = log(1+Z).

Applying the chain rule, the gradient becomes:

∇LRankList =
1

1 + Z
· ∇Z.

For any score component sj , the derivative of Z is given by:

∂Z

∂sj
=

K
∑

k=0

N−k−1
∑

i=1

±σe−σOi(i+k+1) ·I{j = i or j = i+k+1},
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where the sign depends on the role of sj in the comparison.

Since each term is non-negative and | ± σe−σO| ≤ σ, we
have:

‖∇Z‖ ≤ σZ ⇒ ‖∇LRankList‖ ≤
σZ

1 + Z
≤ σ.

Hence, the gradient norm is globally bounded by σ, and the
loss is Lipschitz continuous with constant at most σ, inde-
pendent of N or K .

In contrast, for the original extended formulation:

Lextended =

K
∑

k=0

N−k−1
∑

i=1

log(1 + e−σOi(i+k+1)),

each term contributes an individual gradient
1

1+e
σOi(i+k+1)

≤ 1, leading to a cumulative gradient
norm:

‖∇Lextended‖ ≤ C1NK,

where C1 is the bound from individual terms. This result
implies that as N or K increases, the gradient magnitude can
grow unbounded, potentially causing instability in training.
Thus, LRankList provides better gradient control and smoother
optimization dynamics.

Approximation Issues and Mitigation Strategy

The log-sum-exp approximation significantly reduces com-
putational complexity by avoiding explicit summation over
multiple log terms. While this truncation removes higher-
order interactions, it keeps the most important misordered
terms and provides a smoother approximation that focuses
on the most meaningful ranking errors. However, this ap-
proximation can lead to numerical instability when the score
differences Oi(i+k) are small, resulting in exponential terms
that dominate and destabilize gradients during training. To
counteract this problem, we adopt a robust pre-training strat-
egy wherein the scoring function f(·) is first trained using
the original RankNet pairwise loss. This initial phase en-
sures that the model learns stable and sufficiently separated
score differences. Once a stable initialization is achieved,
we fine-tune the model using the listwise approximation
loss LRankList described above. This curriculum-style train-
ing helps avoid the undesirable behavior of the exponential
terms early in optimization and leads to more consistent con-
vergence across datasets and tasks.

Applications: Preference Learning for Speech

Emotion Recognition

We evaluate the effectiveness of the proposed RankList
framework on tasks involving subjective human judgments.
This Section presents our evaluation on speech emotion
recognition (SER). This domain is especially well-suited for
listwise preference learning due to its dependence on per-
ceptual annotations that produce absolute scores with a high
level of disagreement across evaluators (Yannakakis, Cowie,
and Busso 2017). The challenge lies in modeling subtle or-
dinal relationships from noisy subjective ratings. Modeling
ordinal SER formulation is an active research area (Cao,
Verma, and Nenkova 2015; Lei and Cao 2023; Lotfian and

Busso 2016b,a; Naini et al. 2023; Naini, Salman, and Busso
2023; Naini, Kohler, and Busso 2023; Parthasarathy, Lotfian,
and Busso 2017), leveraging the ordinal nature of emotions
(Yannakakis, Cowie, and Busso 2017, 2021).

Task Overview and Data Setup

We aim to learn a model that ranks speech segments based
on emotional attributes such as arousal (calm to active), va-
lence (negative to positive), and dominance (weak to strong).
We use the MSP-Podcast corpus (Lotfian and Busso 2019),
a large, naturalistic dataset annotated with continuous emo-
tional scores. These annotations reflect perceived intensity
levels along the three core emotional dimensions and are pro-
vided as real-valued scores in the range [1, 7].

To create relative preference labels suitable for training,
we construct lists of N speech segments ordered by their
annotated attribute scores. A minimum score margin W is
enforced between any two samples within a list to ensure
clear relative preferences and reduce label noise. Formally,
for any selected list:

min
i,j∈{1,2,...,N},i6=j

|score(xi)− score(xj)| ≥ W. (15)

A larger W ensures higher label confidence but reduces
the number of available training lists. During testing, we re-
peatedly extract subsets of evaluation with 200 samples and
compare their predicted rankings against the ground-truth
rankings to compute the Kendall’s Tau (KT) metric and pair-
wise accuracy (acc). These metrics are averaged across all
subsets to obtain a robust estimate of model performance,
capturing generalization to both subtle and prominent emo-
tional differences. To determine if the improvements are sta-
tistically significant, we conduct one-tailed t-tests (signifi-
cance threshold of p < 0.05) for each baseline comparison
and apply a Bonferroni correction to account for multiple
comparisons. Values marked with ∗ indicate that the pro-
posed RankList approach is significantly better than all other
baselines.

Feature Representation and Model Setup

To represent the speech segments, we adopt a pre-trained
WavLM-Large model (Liu, Li, and Lee 2021) as a front-end
feature extractor. We fine-tune WavLM on an emotional at-
tribute prediction task using the annotated scores from the
training portion of the MSP-Podcast corpus. The final layer
is removed, and the learned representations are then used
as fixed input features for all ranking models, including
RankList and its baselines. This fixed two-stage setup allows
us to isolate the ranking performance of the preference learn-
ing methods without confounding factors from raw feature
extraction.

We compare RankList against established preference
learning baselines, including pairwise RankNet (Burges et al.
2005), ListNet (Cao et al. 2007), ListMLE (Xia et al. 2008),
SoftRank (Taylor et al. 2008), and Rank-n-Contrast (RnC)
(Zha et al. 2023). All listwise methods were implemented
from scratch for consistency. Detailed descriptions of the
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Table 1: Performance comparison (Kendall’s Tau (KT) and
accuracy (acc)) on MSP-Podcast for arousal, valence, and
dominance.

Method
Arousal Valence Dominance

KT Acc KT Acc KT Acc

Pairwise 0.526 76.4 0.511 74.8 0.419 69.5
ListNet 0.504 74.2 0.498 71.8 0.403 68.1
ListMLE 0.530 77.1 0.508 75.2 0.425 69.3
SoftRank 0.521 75.8 0.514 74.0 0.411 70.2
RnC 0.541 78.7 0.528 77.2 0.435 72.3
RankList 0.591∗ 82.9∗ 0.565∗ 80.0∗ 0.461∗ 74.5∗

∗ indicates statistically significant improvement over all other
baselines.

datasets, baselines, training procedures, and hyperparame-
ter settings are provided in the additional material for re-
producibility and clarity. For RankList, we report results us-
ing the best-performing configuration on the development
set. The best version incorporates skip-2 comparisons and is
based on the proposed log-sum-exp approximation formula-
tion given in Equation 14.

Experimental Results

Table 1 presents the performance comparison across multi-
ple preference learning methods on the MSP-Podcast dataset
for arousal, valence, and dominance. Among the tradi-
tional baselines, ListMLE and SoftRank offer modest gains
over the pairwise RankNet framework, reflecting the poten-
tial benefit of listwise modeling. Notably, Rank-n-Contrast
(RnC) (Zha et al. 2023) demonstrates strong performance
across all metrics by leveraging neighborhood-level con-
trastive learning. It achieves the highest performance among
all baselines, particularly in terms of accuracy, illustrating
the advantages of local structure-aware embedding learning.

Our proposed method, RankList, performs best across
all emotional attributes, demonstrating consistent KT and
pairwise accuracy improvements. RankList shows enhanced
generalization over pairwise and listwise baselines by jointly
capturing adjacent and non-adjacent pairwise constraints
within the ordered lists. Compared to the next-best baseline
(RnC), RankList achieves an average relative improvement
of approximately 5% in KT and 3.5% in accuracy across all
attributes. These gains affirm the value of the proposed skip-
term augmented listwise loss and its efficient approximation.

Ablation Study: Extensions and Variants of
RankList

To better understand the impact of various design choices in
our proposed RankList framework, we perform an ablation
study comparing several model variants:

• RankList: Our full proposed model incorporating both
adjacent and skip-2 comparisons (Oi(i+1), Oi(i+2), and
Oi(i+3)), optimized using the log-sum-exp approxima-
tion described in Eq. 14. This is the final RankList con-
figuration used in the main evaluation results (Table 1).

• RankListWA (without approx) : A variant of RankList that
replaces the log-sum-exp approximation with the exact

Table 2: Ablation study of RankList variants on MSP-
Podcast. Metrics: Kendall’s Tau (KT) and accuracy (acc).

Method
Arousal Valence Dominance

KT Acc KT Acc KT Acc

RankList 0.591 82.9 0.565 80.0 0.461 74.5

RankListWA 0.564† 80.7† 0.538† 77.9† 0.430† 72.1†

RankListskip1 0.586 82.5 0.559 79.3 0.450 73.8

RankListskip3 0.580† 82.1 0.552† 79.0 0.451 74.0

RankListno-skip 0.571† 81.3† 0.548† 78.6† 0.442† 72.6†

RankListw/o-pt 0.582† 81.7 0.553† 79.2 0.439† 72.8†

† indicates that the performance difference with the full model
is statistically significant.

summation over individual RankNet-style log loss terms
across all adjacent and skip comparisons (see Eq. 10).
This model also uses skip-2 comparisons.

• RankListskip1: This variant includes only adjacent
(Oi(i+1)) and skip-1 (Oi(i+2)) comparisons, allowing
evaluation of performance with limited non-local con-
straints.

• RankListskip3: This model includes adjacent, skip-1
(Oi(i+2)), skip-2 (Oi(i+3)) and skip-3 (Oi(i+4)) compar-
isons, to include the impact of longer-range dependen-
cies.

• RankListno-skip: This model uses only adjacent compar-
isons (Oi(i+1)), removing all skip-term dependencies.
This model quantifies the benefit of non-local structure
modeling.

• RankListw/o-pt: This configuration is identical to the full
RankList model, but it skips the initial RankNet-based
pairwise pretraining and directly optimizes the listwise
objective from random initialization.

Table 2 presents the performance comparison for these
variants on the test set of the MSP-Podcast dataset to assess
the contribution of each design choice. The best-performing
configuration, denoted as RankList, incorporates both skip-
1 and skip-2 term comparisons along with the log-sum-exp
approximation, serving as the reference setup for the main
evaluations reported in Table 1.

Removing the approximation component
(RankListwithout approx) leads to consistent degradation in
both KT and accuracy across all emotional attributes. This
trend indicates that the approximation not only improves
computational efficiency but also contributes to optimiza-
tion stability and better ordinal preservation. Similarly,
excluding skip comparisons entirely (RankListno-skip) results
in notable performance drops, underscoring the importance
of incorporating non-adjacent constraints to enhance the
global ranking structure.

Variants with different skip-term configurations (skip1
and skip3) illustrate the effect of broadening non-adjacent
comparisons in the cost function. RankListskip1, which in-
cludes adjacent and skip-1 terms, yields strong performance
across all attributes, demonstrating the benefit of incorporat-
ing minimal non-local ranking constraints. Extending this
further, RankListskip3 includes up to skip-3 comparisons, but
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shows no consistent improvement over the base model. In
some cases, this model with extended connections slightly
degrades performance. This trend indicates that while non-
local structure is essential, expanding the comparison hori-
zon beyond skip-2 does not yield additional gains and may
introduce redundancy or noise in subjective tasks such as
emotion recognition. The full RankList model, which in-
cludes adjacent through skip-2 terms, emerges as the best-
performing configuration, balancing complexity and expres-
siveness in modeling global ranking structure.

The RankListw/o-pt variant, which omits the initial pair-
wise pre-training phase, still achieves strong results, out-
performing many prior listwise models and most ablation
variants. This result demonstrates that the RankList formu-
lation is inherently robust and does not rely solely on pre-
training for good performance. However, the comparison
also affirms that pre-training further refines ranking qual-
ity, particularly under noisy or sparse supervision settings,
as evidenced by a more noticeable drop in dominance pre-
diction, often the most challenging of the three emotional
attributes with self-supervised learning (SSL) speech repre-
sentations such as WavLM (Wagner et al. 2023; Mote, Sis-
man, and Busso 2024; Naini et al. 2024). Overall, these ab-
lations validate that each component of RankList, including
skip-term modeling, log-sum-exp approximation, and pre-
training, meaningfully contributes to the final performance.
Their combined effect leads to consistent gains in both KT
and accuracy, reinforcing the value of structured, extensible
listwise formulations for subjective ranking tasks.

To better understand the behavior of our RankList frame-
work, we conduct two ablation studies on training con-
figuration and sampling strategies. Figure 1(a) shows that
RankList outperforms pairwise RankNet consistently as
training size increases. For fairness, we match the number of
visible comparisons by using 7N pairwise pairs per N list-
wise samples. While both methods improve with more data,
RankList maintains steady gains, whereas pairwise learning
saturates or slightly degrades, highlighting the superior gen-
eralization of listwise learning. Figure 1(b) examines the ef-
fect of the minimum margin W used during list construction
(Eq. 15). We vary W from 0.1 to 0.8 and find that moder-
ate values (0.3–0.5) offer the best performance. Dominance
shows higher sensitivity to W , indicating that larger margins
may be needed to model this attribute effectively.

Generalization of RankList

Table 3 presents both cross-corpus and within-corpus eval-
uation results for the proposed RankList framework against
several preference learning baselines on the BIIC Podcast,
IEMOCAP, and MSP-IMPROV datasets. In the cross-corpus
setting, the models are trained on the MSP-Podcast corpus
and tested on unseen corpora. RankList achieves the high-
est KT scores in nearly all conditions. Interestingly, the
traditional pairwise RankNet model exhibits the strongest
cross-domain performance among the baselines, suggest-
ing its robustness in scenarios with domain shift. How-
ever, RankList consistently surpasses all baselines, includ-
ing RankNet, with relative gains of 3-6% on average across
attributes and datasets. This result underscores the advantage
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Figure 1: (a) Comparison of Pairwise vs. Listwise training
with increasing number of visible comparisons (arousal at-
tribute only). (b) Impact of minimum marginW on RankList
performance across arousal, valence, and dominance.

of modeling structured listwise relationships. In the within-
corpus evaluations, where each model is trained and tested
on the same dataset, RankList again achieves the best overall
performance across emotional attributes. While the Rank-n-
Contrast (RnC) model stands out as the strongest baseline
in these matched settings, RankList maintains an edge, par-
ticularly in capturing global ordinal structures. These trends
affirm that while RnC leverages neighborhood consistency
effectively, it lacks explicit list-level optimization. One ex-
ception to this trend is the dominance prediction task on
the IEMOCAP, where RankList’s performance is compara-
ble to that of the RnC method. Nevertheless, RankList re-
mains competitive and robust, highlighting its applicability
in both matched and mismatched evaluation scenarios.

Applications: Aesthetic Image Ranking

We also validate our listwise preference framework on aes-
thetic image ranking, an inherently subjective task where ab-
solute scores often fail to capture human visual preferences
(Talebi and Milanfar 2018; Kong and Shen 2016). Datasets
such as AVA (Murray, Marchesotti, and Perronnin 2012) and
the artistic image aesthetics assessment corpus (Jin et al.
2022) have enabled research in this area by providing large-
scale relative annotations. This domain highlights the need
for listwise preference learning formulations that go beyond
fixed metrics, capture both local and global item interactions,
and remain stable during training.

We rely on the artistic image aesthetics assessment dataset
(Jin et al. 2022), which is a large-scale collection of im-
ages annotated with aesthetic ratings aggregated from multi-
ple human raters, making it well-suited for preference-based
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Table 3: Cross-corpus and within-corpus results using Kendall’s Tau (KT) for arousal (A), valence (V), and dominance (D)
across BIIC Podcast (Upadhyay et al. 2023), IEMOCAP (Busso et al. 2008), and MSP-IMPROV (Busso et al. 2017) datasets.

C
ro

ss
-C

o
rp

u
s

Method BIIC Podcast IEMOCAP MSP-IMPROV

A V D A V D A V D

Pairwise (Burges et al. 2005) 0.431 0.318 0.291 0.494 0.386 0.341 0.541 0.558 0.429

ListNet (Cao et al. 2007) 0.420 0.302 0.274 0.488 0.374 0.328 0.520 0.547 0.421

ListMLE (Xia et al. 2008) 0.438 0.316 0.295 0.491 0.391 0.332 0.536 0.552 0.434

SoftRank (Taylor et al. 2008) 0.422 0.311 0.290 0.486 0.388 0.340 0.532 0.543 0.416

RnC (Zha et al. 2023) 0.426 0.308 0.288 0.492 0.384 0.344 0.531 0.540 0.432

RankList 0.447∗ 0.326 0.302∗ 0.508∗ 0.397∗ 0.353 0.549 0.569∗ 0.444∗

W
it

h
in

-C
o
rp

u
s Pairwise (Burges et al. 2005) 0.453 0.334 0.306 0.511 0.413 0.360 0.558 0.573 0.452

ListNet (Cao et al. 2007) 0.436 0.326 0.291 0.496 0.398 0.341 0.532 0.561 0.437

ListMLE (Xia et al. 2008) 0.451 0.331 0.304 0.502 0.405 0.355 0.540 0.564 0.442

SoftRank (Taylor et al. 2008) 0.445 0.331 0.301 0.493 0.410 0.347 0.536 0.553 0.439

RnC (Zha et al. 2023) 0.472 0.343 0.315 0.514 0.422 0.370 0.556 0.579 0.461

RankList 0.488∗ 0.357∗ 0.338∗ 0.529∗ 0.436∗ 0.372 0.571∗ 0.592∗ 0.484∗

∗ indicates that the proposed RankList approach is significantly better than all other baselines.

Table 4: Performance comparison on the Artistic Image Aes-
thetics dataset using Spearman’s rank correlation coefficient
(SRCC) and Kendall’s Tau (KT).

Method SRCC KT

Pairwise (Burges et al. 2005) 0.464 0.318

ListNet (Cao et al. 2007) 0.443 0.304

ListMLE (Xia et al. 2008) 0.461 0.320

SoftRank (Taylor et al. 2008) 0.440 0.297

SAAN (Jin et al. 2022) 0.471 0.324

RnC (Zha et al. 2023) 0.465 0.321

RankList 0.493∗ 0.332∗

∗ indicates that the proposed RankList approach is significantly
better than all other baselines.

modeling. We use image features extracted from a ResNet-
50 backbone pre-trained on ImageNet, followed by a fine-
tuned scoring network trained using the listwise loss. Dur-
ing training, images are grouped into lists of size N , and
ordered based on their mean aesthetic scores. We enforce a
score margin to ensure clear relative preferences within each
list (Eq. 15). Similar to the protocol followed in the style-
specific art assessment network (SAAN) (Jin et al. 2022),
we randomly split the 60,337 images from the dataset into
53,937 for train and 6,400 for test sets. The test set is used
as a held-out set to evaluate the model’s ranking ability. We
measure performance with the Spearman rank correlation
coefficient (SRCC) and KT, which are often used in aesthetic
prediction.

Table 4 summarizes the performance of our approach
against standard baselines. RankList achieves the highest
scores among all methods, with an SRCC of 0.493 and a KT
of 0.332, indicating strong alignment with human-annotated
aesthetic preferences. Among the baselines, ListMLE and
SAAN show competitive performance, with SAAN slightly
outperforming others due to its joint modeling of semantic
and aesthetic cues. RnC also provides a strong contrastive
baseline but falls short of RankList, which benefits from ex-

plicit listwise supervision. Traditional listwise models such
as ListNet and SoftRank underperform in this setting, likely
due to their limited capacity to model structured ranking
dependencies. These results highlight the generalization of
RankList to perceptual ranking tasks, demonstrating that
modeling structured list-level constraints improves robust-
ness in domains with subtle and subjective judgments like
image aesthetics.

Discussion and Conclusions

The RankList framework extends the classical RankNet for-
mulation into a robust listwise paradigm, effectively mod-
eling structured ranking relationships for subjective tasks.
By incorporating both adjacent and non-adjacent (skip-
connected) pairwise constraints within ordered sequences,
RankList captures richer supervision compared to isolated
pairwise comparisons. The introduced log-sum-exp approx-
imation significantly improves optimization stability by
smoothing the gradient landscape, leading to better conver-
gence relative to methods aggregating individual pairwise
losses. Our empirical evaluations across the diverse tasks of
speech emotion recognition and aesthetic image assessment
consistently demonstrate that RankList outperforms strong
baselines such as ListMLE, SoftRank, and contrastive meth-
ods such as RnC. This advantage is particularly notable in
cross-domain scenarios, underscoring the generalization ca-
pabilities of RankList.

Nevertheless, RankList presents certain limitations. The
log-sum-exp formulation aggregates multiple comparisons
into one expression, potentially obscuring individual rank-
ing errors, especially when differences in scores are subtle.
While this formulation enhances efficiency in serial compu-
tation, it may be less optimal for parallel execution com-
pared to the original loss composed of independent log
terms. Additionally, the current implementation of skip-term
modeling employs fixed skip distances without adaptive
or task-specific weighting, unlike metric-driven methods
such as LambdaRank (Burges, Ragno, and Le 2006). Fur-
thermore, RankList assumes meaningful ordering of train-
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ing examples, which might restrict its applicability in do-
mains characterized by ambiguous or noisy preference sig-
nals. Overall, RankList provides a flexible and principled
listwise preference learning framework that effectively lever-
ages structured ranking information. Ablation analyses vali-
date the individual contributions of its components, reinforc-
ing its suitability for complex subjective ranking tasks.
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Appendix A: Discussion of the Approximation

Terms

We provide a detailed expansion of the approximation per-
formed in transitioning from Lextended to Lapprox. The original
extended loss is expressed as a product:

Lextended = log

[

K
∏

k=0

N−k−1
∏

i=1

(1 + e−σOi(i+k+1))

]

. (16)

Expanding the product inside the logarithm yields a com-
binatorial expansion of additive terms:

Lextended = log
[

1 +

K
∑

k=0

N−k−1
∑

i=1

e−σOi(i+k+1)

+
∑

(i,j)
(k1,k2)

e−σ(Oi(i+k1+1)+Oj(j+k2+1))

+
∑

(i,j,l)
(k1,k2,k3)

e−σ(Oi(i+k1+1)+Oj(j+k2+1)+Ol(l+k3+1))

+ . . .
]

(17)

This series includes single, double, triple, and higher-
order exponential terms. Our approximation in Lapprox re-
tains only the first-order additive terms, effectively neglect-
ing second-order and higher-order interactions. This approx-
imation is valid under the condition that pairwise differences
Oi(i+k+1) are sufficiently large, making higher-order terms
exponentially smaller in magnitude compared to first-order
terms. Under typical practical training conditions, this as-
sumption holds true as misordering margins are gradually in-
creased during training. Neglecting these higher-order terms
significantly simplifies gradient computations, ensures nu-
merical stability, and prioritizes the most impactful compar-
isons during optimization. Thus, the approximation strikes
a balance between computational tractability and fidelity to
the original product formulation.

A natural question arises: if the simplified approximation
removes terms from the original loss, why does it lead not
only to faster training but also to improved performance?
While truncating higher-order interactions reduces the nu-
merical value of the loss by design, empirical analysis re-
veals that the gradient norm remains largely preserved, re-
taining over 91% of its magnitude compared to the full
extended loss. Specifically, we compared the accumulated
loss and gradient magnitudes of the full extended formula-
tion and our simplified approximation over a training epoch
following RankNet pretraining. The accumulated loss un-
der the approximation was approximately 0.78 times that
of the extended loss, as expected due to the elimination of
higher-order terms. However, the total gradient magnitude
was about 0.91 times that of the full extended loss gradi-
ent. This observation indicates that our approximation pre-
serves the core optimization signal while filtering out redun-
dant or low-impact components. This behavior is consistent
with insights from optimization theory, where simplified or

variance-reduced gradient formulations have been shown to
promote stable and effective convergence in non-convex set-
tings (Reddi et al. 2016). By focusing gradient contributions
on dominant pairwise terms, the model reduces the influ-
ence of less prominent interactions, allowing the optimiza-
tion to emphasize meaningful rank order corrections. Conse-
quently, the simplified loss not only improves computational
efficiency but also enhances the performance on perceptual
ranking tasks such as speech emotion recognition and aes-
thetic assessment.

A key reason the RankList approximation remains robust,
even after removing higher-order terms, is due to how noise
affects the additive versus multiplicative structure of the loss.
In RankList, the simplified loss takes the form:

LRankList = log
(

1 +
∑

e−σOij

)

, (18)

where each term e−σOij is added inside the logarithm. If
one pair (i, j) is incorrectly ordered, its influence enters ad-
ditively and is diluted among many other small-magnitude
terms.

In contrast, the full extended loss is:

LExtended = log
(

∏

(1 + e−σOij )
)

, (19)

which multiplies all pairwise contributions before taking
the logarithm. In this formulation, a single erroneous term
(where Oij < 0) can disproportionately skew the product,
thus amplifying its influence on both the loss and its gra-
dient. Therefore, RankList not only simplifies computation
but also inherently reduces the impact of spurious or noisy
pairwise terms by modeling them within a summation rather
than a product.

Appendix B: Baseline Methods

This section provides an expanded description of all base-
line methods used for comparison in our experiments. Each
method is explained with its key formulation, optimiza-
tion objective, and conceptual difference from our proposed
RankList framework.

B.1 Pairwise RankNet (Burges et al. 2005)

RankNet is a pairwise preference learning model that pre-
dicts the relative ordering between pairs of samples. Given
two samples xi and xj , RankNet models the probability that
xi should be ranked higher than xj based on their scores
si = f(xi) and sj = f(xj). The probability is computed
using a logistic function:

Pij =
1

1 + exp(−σ(si − sj))
, (20)

where σ is a scaling parameter. The ground-truth prefer-
ence P̄ij is typically binary:

P̄ij =

{

1 if xi is preferred over xj ,

0 otherwise.
(21)

The loss is the cross-entropy between predicted and target
preferences:
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LRankNet = −P̄ij logPij − (1− P̄ij) log(1 − Pij). (22)

Unlike listwise methods, RankNet considers each pair in
isolation and does not model the overall list structure. Our
RankList generalizes RankNet to structured lists, enabling
modeling of both local and global constraints.

B.2 ListNet (Cao et al. 2007)

ListNet introduces a listwise learning-to-rank formulation
by modeling a probability distribution over permutations of
items. Given a score vector s = [s1, s2, . . . , sN ], the permu-
tation probability is defined as:

P (π|s) =

N
∏

i=1

exp(sπ(i))
∑N

k=i exp(sπ(k))
. (23)

The loss function minimizes the cross-entropy between
the predicted and ground-truth permutation distributions.
Due to the factorial complexity of full permutations, ListNet
typically uses a top-one probability approximation:

Ptop-1(i|s) =
exp(si)

∑N

j=1 exp(sj)
. (24)

Then, the loss becomes:

LListNet = −

N
∑

i=1

Ptop-1(i|π
∗) logPtop-1(i|s). (25)

While ListNet is listwise in nature, it relies heavily on
approximated permutations and does not explicitly model
pairwise misorderings or long-range list interactions.

B.3 ListMLE (Xia et al. 2008)

ListMLE formulates listwise ranking as a maximum likeli-
hood estimation problem. It seeks to maximize the likeli-
hood of observing the ground-truth permutation π∗ given the
predicted scores s. The probability of π∗ is:

P (π∗|s) =

N
∏

i=1

exp(sπ∗(i))
∑N

k=i exp(sπ∗(k))
. (26)

The loss function is the negative log-likelihood:

LListMLE = − logP (π∗|s). (27)

ListMLE focuses on modeling the entire permutation us-
ing the Plackett-Luce distribution. It captures more structure
than pointwise or pairwise methods but still assumes noise-
free full permutations, which are rare in subjective domains
like emotion or aesthetics.

B.4 SoftRank (Taylor et al. 2008)

SoftRank provides a differentiable approximation to rank-
based metrics like NDCG by modeling the rank of each item
as a random variable. It estimates the probability that one
item ranks higher than another using the logistic function:

P (si < sj) =
1

1 + exp(si − sj)
. (28)

The expected rank µi of each item is then computed as:

µi = 1 +
∑

j 6=i

P (sj > si). (29)

A Gaussian smoothing is applied to convert expected
ranks into a probability distribution over discrete rank po-
sitions. The loss is the cross-entropy between this predicted
rank distribution and the ground-truth rank:

LSoftRank = −

N
∑

i=1

N
∑

r=1

P (ri = r|yi) logP (ri = r|µi).

(30)

SoftRank provides gradient flow via smoothed ranks, but
it may suffer from gradient vanishing or convergence issues
due to soft averaging of many terms.

B.5 Rank-n-Contrast (RnC) (Zha et al. 2023)

Rank-n-Contrast (RnC) is a contrastive framework designed
to learn regression-aware representations in continuous-
valued tasks. It constructs local neighborhoods based on
scalar targets (e.g., arousal/valence scores) and defines pos-
itives and negatives based on relative proximity in the label
space.

Given anchor sample xi and its embedding zi = f(xi),
the loss is:

LRnC = − log
exp(sim(zi, z

+
j )/τ)

exp(sim(zi, z
+
j )/τ) +

∑

j− exp(sim(zi, zj−)/τ)
,

(31)
where sim(·, ·) is the cosine similarity and τ is a temperature.
RnC encourages embeddings to preserve local relative order-
ings but does not explicitly model full list structure. Unlike
RankList, RnC learns from unordered contrastive pairs and
lacks list-level supervision.

B.6 SAAN (Jin et al. 2022)

The semantic-aesthetic alignment network (SAAN) is a re-
gression model developed for aesthetic image assessment. It
uses a two-stream architecture with semantic and aesthetic
encoders (e.g., Swin Transformer backbones) to produce a
quality score.

Given an image x and its aesthetic score y, the model out-
puts ŷ = f(x), and the training loss is:

LSAAN = (y − ŷ)2. (32)

Although SAAN achieves strong regression performance,
it does not model relative or listwise preferences. It assumes
pointwise supervision and focuses on minimizing absolute
prediction errors. In contrast, RankList focuses on preserv-
ing ranking structure, which is more aligned with subjective
tasks like aesthetics or emotion perception.
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Appendix C: Dataset Details

This section provides detailed descriptions of the speech
emotion recognition datasets used in our experiments. All
datasets provide continuous annotations for emotional at-
tributes such as arousal, valence, and dominance, enabling
the construction of preference-based rankings for training
and evaluation.

C.1 MSP-Podcast Corpus

We use release 1.12 of the MSP-Podcast corpus (Lotfian
and Busso 2019), a large-scale emotional speech database
comprising over 324 hours of audio. The recordings were
collected from online platforms under Creative Commons li-
censes, spanning diverse conversational topics including sci-
ence, politics, entertainment, and personal narratives. Strict
quality filters were applied to remove segments containing
background noise, overlapping speech, or music. Each seg-
ment is annotated by at least five raters using dimensional
emotion attributes arousal, valence, and dominance which
respectively capture the perceived intensity, polarity, and
control conveyed by the speaker. Although categorical la-
bels are also available, our experiments focus exclusively
on these continuous emotional attributes. The dataset is
partitioned into training (112,712 segments), development
(31,961 segments), and test (44,395 segments) sets, ensur-
ing speaker independence across partitions. All preference-
based rankings were generated within these respective sub-
sets.

C.2 IEMOCAP Corpus

The USC-IEMOCAP corpus (Busso and Narayanan 2008)
is a widely-used multimodal emotion dataset consisting of
approximately 12 hours of dyadic interactions between ten
professional actors across five sessions. The dataset includes
a total of 10,527 speaking turns featuring both scripted and
spontaneous conversations. Emotional annotations are pro-
vided at the turn level, including both discrete emotion cat-
egories (e.g., happy, sad, angry) and dimensional ratings
for arousal, valence, and dominance. These attributes are
labeled on a discrete scale from 1 to 5 by multiple annota-
tors. Given its balance of emotional breadth and annotation
precision, IEMOCAP remains a standard benchmark in the
emotion recognition community.

C.3 MSP-IMPROV Corpus

The MSP-IMPROV corpus (Busso et al. 2017) contains
dyadic interactions between 12 professional actors across
six sessions, totaling 8,438 speaking turns. Unlike the MSP-
Podcast corpus, which is sourced from naturalistic web au-
dio, the MSP-IMPROV corpus was recorded in a controlled
lab setting, offering clean audio conditions. Each segment is
annotated by at least five annotators for emotional attributes,
specifically arousal, valence, and dominance. This makes
MSP-IMPROV an ideal benchmark for evaluating domain
mismatch effects and testing generalization. In our experi-
ments, we use data from the first three sessions (six speak-
ers) as the test set.

C.4 BIIC-Podcast Corpus

The BIIC-Podcast corpus (Upadhyay et al. 2023) con-
tains approximately 157 hours of speech collected from
Taiwanese Mandarin podcasts. Following the methodology
used in the MSP-Podcast corpus, all utterances are annotated
with arousal, valence, and dominance scores, along with pri-
mary and secondary categorical emotion labels. The audio
content spans a broad range of everyday conversations and
thematic topics. This dataset serves as a cross-lingual evalu-
ation benchmark in our experiments, allowing us to test the
robustness of preference learning models under significant
domain and language shifts.
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