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ABSTRACT

Aggregated search refers to the integration of content from
specialized corpora or verticals into web search results. Ag-
gregation improves search when the user has vertical intent
but may not be aware of or desire vertical search. In this pa-
per, we address the issue of integrating search results from
a news vertical into web search results. News is particu-
larly challenging because, given a query, the appropriate
decision—to integrate news content or not—changes with
time. Our system adapts to news intent in two ways. First,
by inspecting the dynamics of the news collection and query
volume, we can track development of and interest in top-
ics. Second, by using click feedback, we can quickly recover
from system errors. We define several click-based metrics
which allow a system to be monitored and tuned without
annotator effort.
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1. INTRODUCTION

The web is comprised of data covering a variety of media,
sources, and topics. The ease of classifying certain content
types such as news or images has motivated the construction
of specialized sub-collections or wverticals. Despite the exis-
tence of many vertical search engines, searchers may still use
a portal search engine even when the query is handled better
by a vertical search engine. In these cases, the searcher may

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WSDM’09, February 9—12, 2009, Barcelona, Spain.

Copyright 2009 ACM 978-1-60558-390-7 ...$5.00.

182

zimbabwe elections ( Search |

query

Zimbabwe Elections - News Results
slo TIMELINE - Crisis over Zi
=) CHRONOLOGY-Crisis over Zi
£ . 0
Zimbabwe's elections a farce, says PM

elections
elections

news
results

Politics of Zimbabwe - Wikipedia, the free encyclopedia
An overview on elections and election results is included in Elections in Zimbabwe. ... Main
article: Zimbabwe parliamentary election, 2005 ...

en.wikipedia.org/wiki/Politics_of_Zimbabwe -

Elections in Zi - Wikipedia, the free er
Elections in Zimbabwe. From Wikipedia, the free encyclopedia. Jump to: navigation, search
. i election, 1985: Zimbabwe African National Union ...

in Zimbabwe - 69k -

n.wikipedia.

Zimbabwe: Election Reports

Home > Resources & Information > Africa Policy E-Journal > Zimbabwe: Election Reports ... The
election just concluded in Zimbabwe had little chance of being ...
www.africaaction.org/docs02/zim0203. htm -

web
Zii Election Fraud Report, 04/18/05 results
.. from the non-govemmental Zimbabwe Election Support Network has also reportedly .. and
others, however, echoed the view of the local Zimbabwe Election ...
www.africa.upenn.edulafrfocus/afrfocus041805.html -

Elections | Sokwanele

Elections. Mapping Terror in Zimbabwe. Sokwanele Article: June 18th, 2008 ... Zimbabwe
Election Watch. Zimbabwe Business Watch. Send an e-card. Document Library ..
‘www.sokwanele.com/elections.html -

Mapping the election conditions in Zimbabwe | Sokwanele

Mapping the election conditions in Zimbabwe. Sokwanele Article: March 11th, 2008 ...
Please visit our Zimbabwe Election Watch section, and explore our database for a ...
www.sokwanele.com/map/all_breaches -

Figure 1: Integrating news content into web results.

express explicit intent for vertical content (e.g. “zimbabwe
election news”, “border collie pictures”); or, the searcher’s
intent may be implicit (e.g. “zimbabwe election”, “border
collie”). When a general web search engine has access to
or maintains vertical search engines, one important task be-
comes the detection and presentation of relevant vertical re-
sults. This process is referred to as aggregated search [23].

In this paper, we address the issue of integrating search
results from a news vertical into web search results. News
results are presented above the top web result in a small
box we refer to as the news display or view. We present an
example news display in Figure 1. In response to a news
display, a searcher may either click on a displayed link to
news content or skip the display without clicking a displayed
link to news content.

News is particularly challenging because, given a query,
the appropriate decision—to integrate news content or not—
changes with time. Changes occur in two places. In the news
index, topics emerge and decay with respect to content pro-
duction. In query logs, news intent emerges and decays with
respect to content demand. A system which only models
evolving topics in the news index may waste modeling effort
on topics which searchers never request or, even worse, top-



ics which searchers do not believe are newsworthy. A system
which only models evolving query volume will not be able
to separate queries requiring news displays from those which
are merely popular.

We present a system which integrates both massive docu-
ment and query approaches to modeling events. Specifically,
we will train a classifier to distinguish between newsworthy
and non-newsworthy queries.

When training a classifier for any task, one requires a
training set. For our task, such a data set would consist
of queries manually classified as deserving a news display
or not. For humans, making this decision requires knowl-
edge about topical events being queried for as well as topical
events being written about at the time when the query was
issued. While not impossible, such a classification task for a
modest number of days would be extremely expensive and
potentially unreliable.

To address this, we define several click-based metrics which
allow a system to be monitored and tuned without annotator
effort. We will demonstrate that this feedback is sufficiently
related to manual labels so as to allow it to be used as a
surrogate for training.

Our system adapts to the dynamics of the news integra-
tion problem. We present modules for (1) assessing the
newsworthiness of a query, (2) recovering from system er-
rors, and (3) supporting query similarity.

2. RELATED WORK

In information retrieval, distributed information retrieval
(DIR) refers to the situation where a searcher’s query is
satisfied by retrieving content from various sub-collections
[7]. DIR can be divided into three subtasks: resource de-
scription, resource selection, and results merging. The news
integration problem is essentially a DIR task with two sub-
collections and a fixed results merging scheme (i.e. the news
display above the first web result). Our work deviates from
prior work in DIR because of non-stationary relevance, mas-
sive click feedback, and the small number of subcollections.

Query classification is a common task in information re-
trieval [4]. Classifiers have been used for the improvement
of retrieval [16] and advertising [6]. Vertical selection refers
to classifying queries into one or more relevant verticals. Li
et al. present an algorithm for expanding a training set for
shopping and job verticals [19]. While Li et al. address
the general problem of vertical selection, our work focuses
on the particularities—for example non-stationarity—of the
news vertical.

As mentioned earlier, one approach to detecting events
focuses on documents. Topic detection and tracking (TDT)
addresses the modeling of bursts of newsworthy documents
[1]. TDT systems attempt to predict the onset of news
events and topics. In information filtering, given a query
or seed document, the system must decide which documents
to present the user [5]. Strategies usually involve modeling
a topic and presenting documents predicted to be relevant.
In some situations, a system intentionally presents a docu-
ment predicted to be non-relevant in order to refine its topic
model [34]; this is part of a more general body of work in ac-
tive learning [21]. In an information retrieval situation, Diaz
and Jones inspected the temporal distribution of retrieved
documents in order to predict system performance [11].

Another approach to event detection focuses on queries.
Jones and Diaz construct search volume time series and at-
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Table 1: Queries binned by empirical click-through rate

bin breaks Spring 2007  Winter 2008
1 (0.721,1.000 8 19
2 (0.553,0.721 30 40
3 (0.432,0.553 58 100
4 (0.337,0.432 104 135
5 (0.260,0.337 160 212
6  (0.194,0.260 274 303
7 (0.137,0.194 458 491
8  (0.086,0.137 1067 1203
9  (0.041,0.086 2596 2873
10  [0.000,0.041] 5926 7401
all 10681 12777

tempt to predict whether a query refers to a single, multiple,
or no events [14]. From the data mining community, there
is some work on mining bursts in query logs [31]. This is
part of a more general body of work in burst detection [33].

Click information provides a noisy feedback on the rele-
vance of documents to a certain query. This information can
be used for evaluation [12, 8], offline training [19], and on-
line news personalization [10]. The substantial information
in click histories has resulted in the development of several
formal models of user click behavior [2, 13].

Because of the redundancy in queries being issued to search
engines, a few approaches have applied online learning tech-
niques to adjust models throughout the lifetime of the sys-
tem. Radlinski et al. use a bandit model to adapt retrieval
results and evaluate on synthetic click data [26]. Contextual
and search advertising refers to deciding which advertise-
ments to place on a webpage or search results page. Bandit
approaches have also applied to advertisement placement
[24, 25, 17]. These approaches, because placement compa-
nies accumulate revenue per-click, optimize the number of
clicks accumulated. There are two differences between the
ad placement problem and news integration. First, every
action in ad placement results in feedback. Whereas if we
decide not to present a news display, we receive no feed-
back. Second, bandit solutions assume reward accumulation
micro-averaged over all queries. Instead, we focus on macro-
averaged performance, benefiting systems which do well on
many queries as opposed to popular queries.

3. MOTIVATION

We hypothesize that there is a strong correlation between
the click-through rate of a news display and its newsworthi-
ness. We test this hypothesis using two experiments.

We collected two data sets over the course of two weeks in
Spring 2007 and two weeks in Winter 2008. Data was col-
lected using a small percentage of search traffic. For users
in this sample, we presented a news display if there was any
hit in the title of articles in the news index. We presented
a small box (Figure 1) containing up to three article titles,
recording query times, display clicks, and display skips. Af-
ter the data collection, we first removed query events which
were not presented a news display. We then removed queries
occurring fewer than 15 times and those consisting of a sin-
gle character. Queries were normalized by down-casing and
removing punctuation. For Spring 2007, this resulted in
a total of 1,621,140 views represented as query-time-click
triplets (12,777 unique queries). For Winter 2008, this re-



Table 2: Mean newsworthiness grade in each bin.
Twenty samples from each bin of Winter 2008 queries
were judged to be newsworthy or not. Treating news-
worthy queries as having value 1 and 0 otherwise, we
computed the mean and standard deviation of grades in
each bin. We also present a third column which averages

the mean bin values for both users

bin user 1 user 2 mean
1 0.889 +0.314 1.000 £ 0.000 0.944
2 0.722 4+ 0.448 0.944 £0.229 0.833
3 0.765 +0.424 0.944 £0.229 0.855
4 0.556 +0.497 1.000 £ 0.000 0.778
5 0.600 +0.490 0.941£0.235 0.771
6 0.400 +0.490 0.706 £0.456 0.553
7 0.368 +0.482 0.647 £0.478 0.508
8 0.111 +£0.314 0.412+0.492 0.261
9 0.100 +0.300 0.222 +£0.416 0.161
10  0.000 £0.000 0.200 #+0.400 0.100

sulted in 1,856,996 views (10,681 unique queries). For each
unique query, we computed the empirical click-through rate
using the all view and click information in the data set. We
then broke the click-through rate range into the logarithmic
subranges presented in Table 1 and counted the number of
queries in each bin. Our experiments in this section only use
the Winter 2008 data.

We are interested in the click-through rate of queries man-
ually judged newsworthy. To investigate this, we used the
following experiment. On a single day, a total of 184,016
displays were presented, receiving a total of 11,742 clicks.
During this day, we asked annotators to generate a list of
queries which they believed should generate a news display.
We gave annotators access to various news media sources
including the web as well as query log information. The an-
notators generated a list of 336 unique queries. For each of
these queries, we aggregated the number of clicks and views
on this day and computed the click-through rate. The click-
through rate was determined to be 0.249. These queries
therefore tend to be drawn from the first six bins in Table 1.
However, the majority of possible displays is far below this
click-through rate.

This result demonstrates that queries manually classified
as newsworthy tend to have high click-through rates. We
would also like to confirm that queries with high click-through
rate tend to be newsworthy. In order to test this, we con-
structed the following experiment. For the Winter 2008
data, we selected 20 queries from each of the bins in Ta-
ble 1, forming a set of 199 queries. We repeated this process
twice and asked two annotators to label queries as deserving
of a news display or not. Assigning the value 1 for news-
worthiness and 0 for non-newsworthiness, we computed the
mean value for queries in each bin. We present these means
and standard deviations in Table 2. We note that, indeed,
queries in high click-through rate bins tend to be judged
newsworthy by our annotators. Averaging across users, bins
with click-through rates above 0.194 tend to be judged news-
worthy.

4. OUR APPROACH

In this paper, determining newsworthiness relies on pre-
dicting the probability of a user clicks on the news display
of a query. We will use the following notation in this paper,
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Table 3: Base contextual features. We computed web
search query log, news vertical query log, and news in-
dex features for each query. We also included various
combinations of features to compute rate features

feature description
query-last-k how many of the last k& queries
were ¢

yesterday, how many of the last k
queries were ¢

how many of the last k queries on
the news vertical were ¢
yesterday, how many of the last k
queries on the news vertical were
q

how many of the last k¥ documents
were retrieved by ¢

yesterday, how many of the last k
documents were retrieved by ¢
weighting by relevance, how old is
the average retrieved document
weighting by relevance, what is
the standard deviation of retrieved
documents

query-last-k-yesterday
news-last-k

news-last-k-yesterday

doc-last-k
doc-last-k-yesterday
weight-mean-age

weight-stddev-age

true probability of a user clicking a news dis-
play given the query ¢ was issued at time ¢
CZ; clicks observed for query ¢ for views before ¢

V; displays presented for query g before ¢
S, skips observed for query q (i.e. V; —C})
ﬁfl predicted probability of a user click

7  threshold on ﬁfl for presenting a display

4.1 Estimation

The simplest way to estimate pfl for a news display is by
presenting the display to a large number of users over a large
period of time. Mathematically,,

Lo :
Given enough data and assuming pfl is stationary, we should
be able to compute a decent estimate of pfz.

Unfortunately, the assumptions required for a maximum
likelihood estimation often do not hold. We often have to
estimate pé after only having seen it a few times, with or
without direct display click information. Furthermore, pfl is
unlikely to be stationary. For example, the query “yahoo”
will have a higher pfl on days when some company-related
event happens than on days when nothing happens.

One way to address this situation is to compute an initial
guess at the pfl from the query’s context. A query’s context
refers to the various non-lexicographic information we have
about the query when it is submitted. This includes infor-
mation such as whether the query exists as part of a burst
of queries (in either the web or news vertical query log), and
whether top ranked news documents retrieved by a query
were all published in the last few minutes. We list several
candidate predictors in Table 3. We prefer features which
are not lexicographic because they allow us to learn a prior
belief on the click-through rate based solely on properties of
the query, not the query itself.

We would like to model the relationship between these



features and clicks. To this end, we can gather data by pre-
senting a large number of displays to users. Because we are
using query-independent features, clicks on different queries
with the same context will provide meaningful evidence for
a model to generalize from. In our experiments, we model
the probability of click using logistic regression. We refer to
this estimate as 7r¢§. It is important to mention that our fea-
tures change with time, implying that 71'2 may not be equal
to 71'2“.

Recall that Equation 1 suffered from insufficient data for
small numbers of views. However, Equation 1 becomes more
accurate with large increasing data. We will incorporate 7rf1
into our estimate ﬁé using a Beta prior over pz. Mathemat-
ically,

pl, ~ Beta(a, b)

(2)
where we set the Beta parameters such that,
b= p(l —mg)

where p is a hyperparameter of our model.

Assume we have click and skip information for a query.
Then, the posterior, given data from displays presented is
also a Beta distribution,

pr\C;, S; ~ Beta(a + C;, b+ Sé)

®3)

t
a = pum,

(4)

And the posterior mean,

D(a+Ch+b+Sy) ‘_ ‘_
~t q q a+C 1 b+S 1
= 1-— d,
Dy /pr(a+cg)r(b+5;;) T (1—=p)°T7a " dp
_ Cq+pmg (5)
Vi+p

Note here that we can gain an intuition for u. For small
values of u, the model will be very sensitive to early feedback
from the user. For large values, the model will rely on 7'('2
more than feedback.

We have demonstrated how to use historic clicks and skips
for a query to estimate pfz. However, a query’s probability of
being clicked is also likely to be related to the clicks and skips
of topically related queries. For example, consider a situa-
tion where we have seen many query events for “olympics
opening ceremony” and have presented a direct display for
these cases, providing a reliable click-through rate estimate.
Then, given the new query “opening ceremony”, we have in-
formation about the click-through rate if we know that these
two queries are related.

There are several methods for detecting the relationship
between queries. In this work, we adopt a corpus-based sim-
ilarity measure using language models of retrieved results.
Specifically, we create a query language model by interpo-
lating the top retrieved document language models weighted
by their retrieval scores [18, 9]. Formally,

Pulbe) = 2 37 P(wl6d) P(QI6a)

deR

(6)

where P(Q|04) is the query likelihood score for the document
dand Z =}, P(Q|04). This provides a query language
model for each query. We compare two queries by comparing
their associated language models using the Bhattacharyya

correlation,
B(gi ;) = Y
wey

P(wl]fq;) P(w]bq;) (7)

185

This provides a similarity score between 0 and 1. Similar
methods have been used for retrieval and ad placement tasks
[3, 32, 27, 22]. We note that while the Bhattacharyya simi-
larity measure uses only P(w|fq), other similarity measures
based on time or term overlap can be used or combined with
B.

We incorporate information from related queries as pseudo-
clicks. Specifically, define the aggregated information for a
query as,

Co=Co+> Bla.q)Cy (8)
q/

Vi=Vi+ > Blg,d)Vy )
q/

Sy =8;+> Bla,q)Sy (10)

q

We can use these modified click and view counts in the same
way we used the original counts in Equation 5.

One potential drawback to this approach is maintaining a
collection of dense language model vectors (Equation 6) of
previously seen queries. Even worse, given a new query, we
would have to compute Equation 7 for each of these previ-
ously seen queries. In practice, we can avoid much of this
cost by using only the top terms from Equation 6 and using
inverted indices for storing previously seen queries.

4.2 Classification

Given ﬁf], we need to make a decision whether to present
a display or not. We will make this decision based on the
relative importance of predicting clicks and skips. Assume
that we know the true labels for all queries, regardless of
whether they were actually presented a display. One way
to evaluate our system is by its accuracy of predicting these
clicks and skips,

_ ol +85

Ao = aCh + 8

(11)

C+

q

S

Cq
Sq

correctly predicted clicks

correctly predicted skips
total clicks, seen and unseen

total skips, seen and unseen

where a@ > 1 and controls the importance we place on de-
tecting clicks.

Given this measure of accuracy and a value for «, we can
compute the expected incremental accuracy for the judg-
ment on one query, A, by integrating with respect to the
distribution in Equation 4,

E[A% |vg] > E[AL 7]
apl, > 1—ph
1

~t
Pq > a+1

(12)

where vfl is a binary variable indicating the decision to present
a display for query g at time ¢. Equation 12 provides a
method for setting a threshold probability above which a
display will be presented; we refer to this value as 7.
Sometimes, we would like to present a display even though
a query is below threshold. The motivation for this may



be to gather a small amount of valuable feedback without
devastating system performance. One naive method is to
present the direct display if the query has not been issued
recently. In our work, we will look at presenting the first k
occurrences of a query, regardless of ﬁfl.

The naive approach samples from all queries in a similar
fashion. However, we may wish finer control on the degree
of sampling our system performs. Therefore, we can also
present queries below threshold randomly with some proba-
bility. In the e-greedy approach, if pfl < 7, with probability
€, we randomly choose to present a display solely in order
to get feedback [30].

The e-greedy approach while providing a control on the
amount of sampling, does not incorporate any information
from a query’s click history. We may want to explore only
when we have presented few displays. That is, we might
make € a function of V,. To achieve this, we exploit the fact
that Equation 4 defines a distribution from which we can
sample p;. Assume for some query, p;, < 7. We then sam-
ple a pz from Equation 4. If this sample is above threshold,
we present a display to the user. If we have seen few or no
samples, the variance of the posterior will be high, allowing
queries with ﬁfl below threshold to be displayed. As we ac-
cumulate samples, this variance falls, ensuring that queries
below threshold will no longer be presented. This process is
similar to approaches used in reinforcement learning [28].

4.3 Summary

It is worth pointing out how our system responds to false
positives and false negatives. False positives, displayed queries
which do not receive clicks, are addressed by the click feed-
back model. We present an example of the effect of 10 clicks
and 10 skips in Figure 2. After 10 skips, the posterior mean
falls below threshold (i.e. p, < 7). False negatives, clicked
queries which are not presented a display, are addressed by
sampling. We present an example of the probability of sam-
pling a below threshold query in Figure 3. With a prior
probability of 0.15, the query falls below threshold. How-
ever, with probability 0.272, the query will be presented to
the searcher.

The hyperparameter p plays two roles. In Equation 5,
can be interpreted as pseudo-counts provided by the prior.
Therefore, for false positives, a small © makes the model sen-
sitive to feedback. A larger u results in a model which is re-
quires more data to change the posterior. For false negatives,
a large u results in a concentrated posterior and a lower
probability of queries below threshold being sampled (Fig-
ure 3). A small y results in a higher probability of queries
below threshold being sampled. The hyperparameter p en-
codes the tradeoff between exploration and exploitation.

We can decouple the exploration and exploitation effects
of u by introducing a new parameter which controls the sen-
sitivity of the model to feedback, independent of exploration.
We accomplish this by allowing each observation to con-
tribute a count greater than 1. Assume that each observed
click adds a count of w to the C4; similarly for skips and
views. The posterior mean becomes,

wCq +
wVy + @

...ti

q

(13)

We can, then, for a fixed p control the contribution of feed-
back using w.
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S. EVALUATION

We evaluate our performance using two suites of metrics.
If we treat clicks as the desired items to be retrieved, we can
compute precision and recall for a given threshold 7. There-
fore, we sweep values of 7 in order to generate precision-
recall curves. These curves are micro-averaged; we consider
the totality of clicks retrieved as opposed to the clicks re-
trieved per query. This is because we are likely to compute
extremely low precision and recall for the large portion of
queries with low click-through rate. Because these queries
dominate the data set, subtle differences in precision for
queries with high click-through rates is unlikely to be no-
ticeable.

In order to address this issue, we also use the accuracy of
a system’s classifications (Equation 11). Unlike click preci-
sion and recall, we can compute this measure for each query
and macro-average the query level accuracies. In our ex-
periments, we set o = 4 which leads to a 7 = 0.20 and is
consistent with the results from our manual annotations. In
addition to macro-averaging over all queries, we also macro-
average performance within the bins described in Table 1.
This will provide us with an indication of which queries are
affected by performance changes.

We also define an oracle classifier which computes the sta-
tionary, maximum likelihood pfl for each query given all data
in the data set. We use this oracle classifier in order to pro-
vide practical upper bound on performance. We present the
performance of this oracle in Table 4. In presentation, we
will normalize all scores with respect to this oracle classifier.

Table 4: Accuracy for each bin if we classify each query
by its true click-through rate

bin  Spring 2007 Winter 2008
1 0.935 0.947
2 0.870 0.858
3 0.786 0.792
4 0.712 0.710
5 0.625 0.630
6 0.531 0.536
7 0.563 0.562
8 0.671 0.670
9 0.802 0.801
10 0.958 0.962
all 0.855 0.863

6. EXPERIMENTS

We use the two data sets described in Section 3 as ground
truth for clicks and skips. We simulate a running system by
using these streams of queries with click and skip feedback
when the system classifies a query as deserving a display.
Because we have the true click and skip information, we can
compute the metrics in Section 5.

In addition to query volume information present in the
data set, the contextual model needs news collection infor-
mation. For each set of queries, we gathered three months of
news articles found on the web. The Spring 2007 corpus con-
sists of 10,884,958 documents and the Winter 2008 corpus
consists of 9,123,972 documents. We indexed the corpora
using the indri retrieval engine [29].

We use the liblinear package to model the contextual
prior [20]. The model trained on the Spring 2007 data was
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used to compute 7rf1 for the Winter 2008 data; similarly, the
model trained on the Winter 2008 data was used to compute
7} for the Spring 2007 data.

We performed three non-sampling runs which included
only using the contextual model (baseline), using feedback
without similar queries (history), using feedback with simi-
lar queries (similarity). All sample based runs used feedback
and similarity information. Results for algorithms which
include random sampling were averaged over 100 separate
runs. Except for the sampling runs, we fix g4 = 10. When
using the model with weighted observations, we always use
w= {5

7. RESULTS

We present click precision-recall curves for our contextual
models (baseline) and feedback (history) in Figure 4. Com-
paring the baseline performance to that of a model trained
on the same data demonstrates that generalizing from Win-
ter 2008 data to Spring 2007 seems to perform better than
generalizing in the other direction. The reduced perfor-
mance appears to be confined to points of low recall. At
higher recall levels, models achieve comparable precision.
We should also note that across all recall levels, click feed-
back improves performance over the baseline. In fact, for low
recall levels, the feedback model outperforms the contextual
model trained on the same set.

Table 5: Normalized accuracy for non-sampling meth-
ods. Bold numbers represent statistically significant im-
provements over the baseline; italicized numbers rep-
resent significant decreases compared to the baseline.
Numbers superscripted by x represent statistically signif-
icant improvements over history; numbers superscripted
by o represent statistically significant decreases com-
pared to history

Spring 2007

baseline history similarity
1 0.297 0356 19.73% 0449 51.25 %
2 0.326 0.408 2522 % 0.460 41.18 %
3 0.364 0.440 20.87 % 0.540* 48.40 %
4 0.457 0.516 12.85% 0.559* 22.19%
5 0.624 0.624  0.02 % 0.631 1.05 %
6 0.898 0.898 -0.07 % 0.903 0.56 %
7 0.998 0.998  0.03 % 0.996 -0.20 %
8 0.996 0.998 0.18 %  0.997° 0.05 %
9 1.000 1.000  0.03 % 1.000°  -0.01 %
10 1.000 1.000 0.01 % 1.000° -0.02 %
all 0.980 0.981 0.16 % 0.982* 0.26 %
Winter 2008
baseline history similarity
1 0.358 0.421 1751 % 0.615* 71.58 %
2 0.576 0.636 10.33 % 0.820* 4231 %
3 0.598 0.680 13.60 % 0.776* 29.61 %
4 0.620 0.654 555 % 0.738* 19.02 %
5 0.722 0.731 1.36 %  0.796* 10.32 %
6 0.901 0.885 -1.78%  0.896* -0.54 %
7 0.978 0.982 0.38 % 0.979 0.10 %
8 0.964 0.984 208 % 0.977° 132 %
9 0.973 0991 194% 0.987° 146 %
10 0.985 0.995 1.00% 0.992° 0.68 %
all 0.964 0.978 135 % 0.978 1.37 %

In Table 5, we present the A4 accuracy of our non-sampling
runs. We find that using click feedback improves perfor-
mance for all query bins, indicating that feedback provides
a method not only for dealing with false positives but also,
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Figure 4: Click precision and recall. The performance of baseline models on the training set is shown as a dotted line.

because 7rfl may change with time, for preventing true pos-

itives from becoming false negatives in the future. When
we consider similarity information, average performance im-
proves over the basic feedback model in the Spring 2007
data set. However, for both data sets, we see an improve-
ment for queries with high click-through rate and a reduc-
tion in queries with low click-through rate. This implies
that similarity information tends to classify more queries as
newsworthy on average.

We first inspect the performance of our naive sampling
scheme. In Table 6, we compare sampling the first k£ occur-
rences of all queries. Since we are increasing the number
of queries which are presented displays, an improvement for
queries with high click-through rates is expected. However,
we also see substantial drops in the accuracy for queries with
lower click-through rate.

We introduced the e-greedy approach in order to provide
fine-grained control on exploration. Based on the results in
Table 7, however, it is unclear whether we see a benefit to
this approach. Comparing columns where ¢ = 0.25 to com-
parably performing columns for the naive algorithm, we see
that the average performance for the e-greedy approach is
inferior. For example, in the Winter 2008 data set, perfor-
mance for bins 1-6 is comparable between ¢ = 0.75 and k = 1
but the naive performs better for queries with lower click-
through rates. The attractive property of the e-greedy ap-
proach is the ability to control exploration. As e approaches
0, performance will become comparable with “similarity”.
This granularity is not possible with naive sampling.

One of the drawbacks of the e-greedy approach is in its
uniform treatment of below threshold queries. In Table 8,
we present the performance for sampling from the posterior.
For u = 10, we observe a greater improvement in queries
with high click-through rate and smaller reduction in queries
with low click-through rate compared to both of the other
sampling methods. For example, in the Spring 2007 data
set, sampling from the posterior achieves statistically sig-
nificant improvements compared to naive sampling (k = 1)
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for bins 3, 4, 8, 9, and 10 with no significant differences in
performance for other bins. Similarly, for the same data set,
sampling from the posterior achieves statistically significant
improvements compared to e-greedy sampling (e = 0.05) for
bins 7, 8, 9, and 10 with no significant differences in perfor-
mance for other bins.

If we attempt to reduce exploration by increasing u, we
begin to degrade performance on queries with high click-
through rate. This is results from the coupled effects of p.
Reducing exploration results in more concentrated posteri-
ors which in turn require more data to be adjusted. In Table
9, we present results for our model with weighted observa-
tions. In this case, increasing p for a fixed w results in a
more graceful change in performance. In fact, at u = 100,
we get significant improvements in performance for queries
with high click-through rate without hurting average perfor-
mance.

8. CONCLUSION

We have presented a system for aggregating news search
and web search which is able to adapt to new events in re-
sponse to document volume, query volume, and click feed-
back. We found that click feedback could provide evidence
to adaptively improve a non-lexicographic baseline model.
We also demonstrated a method for incorporating query sim-
ilarity to improve performance on queries with high click-
through rate. Finally, we proposed several algorithms for
opportunistically gathering user feedback for low-performing
queries.

We believe the approaches described here are general enough
to apply to other verticals with dynamic content and inter-
est such as blog or financial data. Even within the context
of news integration, there is room for future work. First,
we assume that non-stationarity is dealt with in our model
through the contextual model features and click feedback.
Alternatively, we can use signals in the traffic to detect when
it is appropriate to significantly revise our estimate of pfl [15].



Secondly, we incorporated information from similar queries
through click evidence. Alternatively, we might incorporate
feature values from similar queries.
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Table 6: Naive sampling of queries. The parameter k controls the number of queries we automatically present before
using the model

Spring 2007
similarity k=1 k=2 k=3 k=4 k=5

1 0.449 0545 21.46% 0.780 73.76 % 1.004 12353 % 1.003 12324 % 1.001 122.95%
2 0.460 0.602 30.67 % 0.736 59.88% 0.837 81.75% 0.872 89.35% 0.955 107.38 %
3 0.540 0.653 20.93 % 0.743 3748 % 0.794 46.99 % 0.875 61.99 % 0.906 67.76 %
4 0.559 0.627 12.19% 0.699 2511 % 0.768 3744 % 0.788 41.01 % 0.819 46.60 %
5 0.631 0.704 11.66 % 0.757 1998 % 0.797 2639 % 0.822 3029 % 0.856 35.66 %
6 0.903 0.915 1.29% 0.928 2.73%  0.929 2.88 % 0.930 2.92 % 0.929 2.82 %

7 0.996 0.982 -140% 0.958 -3.80% 0.938 -5.81 % 0.925  -7.07 % 0.928 -7.28 %
8 0.997 0.958 -439% 0912 -853% 0.865 -1322% 0.838 -16.39% 0.798 -19.96 %
9 1.000 0.934 -6.52% 0.87% -12.63% 0.815 -1845% 0.759 -24.02% 0.708 -29.12 %
10 1.000 0.910 -896 % 0.828 -1721% 0.751 -2491% 0.679 -32.02% 0.615 -38.52 %
all 0.982 0.915 -6.85% 0.852 -13.25% 0.792 -1940% 0.786 -25.05% 0.685 -30.23 %

Winter 2008
similarity k=1 k=2 k=3 k=4 k=5

1 0.615 0.840 36.66 % 0.966 57.14% 0.991 61.26 % 1.000 62.68% 1.000 62.68 %
2 0.820 0.902 10.00% 0.934 1390% 0.951 1595 % 0.957 16.60 % 0.966 17.80 %
3 0.776 0.849 949% 0.877 1312% 0.891 1487 % 0.923 18.98 % 0.917 18.26 %
4 0.738 0.793 753% 0.850 1526 % 0.893 21.01 % 0.912 2361 % 0.925 2542 %
5 0.796 0.832 454% 0.857 7.62% 0.889 11.62% 0.901 13.19% 0.903 13.39 %
6 0.896 0918 245% 0.926 330% 0.929 3.58 % 0.934 4.21 % 0.934 4.19 %

7 0.979 0.958 -2.12% 0.935 -450%  0.929 -5.09 % 0.919 -6.12% 0.904 -7.61 %
8 0.977 0.930 -481% 0889 -9.01% 0.857 -1228% 0.823 -1573% 0.788 -19.38 %
9 0.987 0.922 -6.61% 0861 -12714% 0.804 -1853% 0.754 -23.60% 0.708 -28.23 %
10 0.992 0.907 -856 % 0.828 -16.54% 0.758 -24.06 % 0.683 -31.08% 0.620 -37.50 %
all 0.978 0911 -6.7T% 0.849 -1316% 0.791 -19.09% 0.787 -24.65% 0.686 -29.86 %

Table 7: e-greedy. The parameter ¢ is equal to the probability of showing a display if a query is below threshold.
Performance is averaged across 100 runs of the algorithm

Spring 2007

similarity e =0.25 e=0.15 e =0.05
0.449 0.806 79.55 % 0.719 60.17% 0.557 24.08 %
0.460 0.777 68.72% 0.702 5245 % 0.570 23.73 %
0.540 0.785 4528 % 0.729 35.01 % 0.630 16.66 %
0.559 0.768 3744 % 0.715 2798 % 0.624 11.68 %
0.631 0.781 2388 % 0.744 1795% 0.684 8.36 %
0.903 0.940 410% 0.929 281 % 0913 1.12%
0.996 0.936 -6.05% 0.958 -381% 0.983 -1.28%
0.997 0.868 -12.90 % 0.919 -7.82% 0.970 -2.70%
1.000 0.811 -1887% 0.886 -11.37% 0.961 -3.81 %
1.000 0.761 -23.85% 0.856 -14.32% 0.952 -4.718 %

all 0.982 0.797 -1891% 0.872 -11.26% 0.946 -3.711 %
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Winter 2008

similarity €e=0.25 e=0.15 e =0.05
0.615 0.873 41.96 % 0.822 33.76 % 0.708 15.13 %
0.820 0.910 1090 % 0.887 8.17% 0.851 3.76 %
0.776 0.888 1456 % 0.861 1098 % 0.817 5.29%
0.738 0.858 1633 % 0.834 13.05% 0.794 7.61%
0.796 0.873 9.65 % 0.853 7.18 % 0.825 3.60 %
0.896 0.926 3.35 % 0.918 241 % 0.907 121 %
0.979 0.922 -578% 0.942 -380% 0.964 -1.50%
0.977 0.853 -12.75 % 0.901 -7.84%  0.950 -2.82%
0.987 0.802 -1871% 0.875 -11.30% 0.949 -3.86%
0.992 0.756 -23.78 %  0.850 -14.29% 0.944 -4.80 %

all 0.978 0.790 -19.15% 0.866 -11.47% 0.940 -3.83%
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Table 8: Sampling from the posterior. The parameter i controls the concentration of the posterior around the 7rf1.
Performance is averaged across 100 runs of the algorithm

Spring 2007
similarity pn =10 w=25 © =250 © =100

1 0.449 0.639 4238 % 0486 829% 0454 1.10% 0.387 -1381%
2 0.460 0.671 45.74 % 0.510 10.84 % 0.445 -3.36% 0.410 -11.04 %
3 0.540 0.714 3214 % 0.585 825% 0.494 -860% 0.439 -18.79 %
4 0.559 0.679 21.62% 0581 399% 0528 -550% 0.504/ -9.85%
5 0.631 0.719 1394 % 0.661 4.74% 0.641 1.65% 0.633 0.41 %

6 0.903 0.924 233% 0.910 0.78% 0906 0.25% 0903 -0.03%
7 0.996 0.980 -155% 0994 -0.16% 0997 0.08%  0.997 0.14 %

8 0.997 0.976 -208% 0.992 -050% 0.995 -019% 0995 -0.12%
9 1.000 0.979 -2.06% 0.996 -031% 0.999 -0.02% 1.000 0.01 %

10 1.000 0.979 -210% 0.996 -0.32% 0.999 -0.02% 1.000 0.01 %

all 0.982 0.968 -149% 0.981 -019% 0.982 -0.07% 0.981 -0.13%

Winter 2008
similarity pn =10 w=25 © =250 © =100

1 0.615 0.863 4046 % 0.721 17.25% 0.656 6.67 % 0.611 -0.61%
2 0.820 0.914 11.48% 0.862 507% 0.798 -272% 0.726 -11.53%
3 0.776 0.886 1428 % 0.838 808% 0.778 034 % 0.722 -6.88%
4 0.738 0.850 1521 % 0.812 10.05% 0.763 3.42% 0.713 -3.39%
5 0.796 0.870 930% 0.846 622% 0.815 234% 078 -1.37%
6 0.896 0.918 244 % 0.916 214 % 0.915 211 % 0.910 1.48 %

7 0.979 0.937 -424% 0.956 -234% 0.967 -119% 0974 -054 %
8 0.977 0.908 -7.06% 0.931 -4.69% 0.947 -3.07% 0.957 -2.02%
9 0.987 0.907 -8.05% 0.935 -521% 0.955 -322% 0.966 -2.13%
10 0.992 0.908 -843% 0.940 -525% 0.963 -2.92% 0.976 -1.62%
all 0.978 0.908 -715% 0.934 -450% 0.952 -2.67% 0.961 -1.73%

Table 9: Sampling from the posterior with weighted observations. The parameter i controls the concentration of the
posterior around the ﬁg. Performance is averaged across 100 runs of the algorithm

Spring 2007

similarity pn =10 w=25 ©=>50 p =100
0.449 0.639 4238 % 0.547 21.77 % 0487 850% 0476 590 %
0.460 0.671 4574 % 0.580 26.04 % 0.512 11.16 % 0.478 391 %
0.540 0.714 3214 % 0.651 20.60% 0.603 11.72% 0.573 6.12%
0.559 0.679 21.62% 0.619 10.86 % 0.582 4.18%  0.567 1.53 %
0.631 0.719 1394 % 0.683 829% 0.660 458% 0.646 243 %
0.903 0.924 233% 0914 122% 0909 060% 0906 0.33%
0.996 0.980 -1.55% 0.990 -0.61% 0.993 -027% 0.995 -0.11 %
0.997 0.976 -2.08% 0.990 -0.68% 0.994 -027% 0.995 -0.15%
1.000 0.979 -205% 0.995 -047% 0.998 -0.13% 0.999 -0.06 %
1.000 0.979 -210% 0.995 -041% 0.999 -0.07% 0.999 -0.03 %

all 0.982 0.968 -149% 0.981 -017% 0983 0.02% 0983 0.01%
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Winter 2008

similarity pn =10 n =25 ©n =50 pn =100
0.615 0.863 40.46 % 0.808 3147 % 0.748 21.64% 0.700 13.87%
0.820 0.914 1148 % 0.899 961 % 0.887 818% 0.873 6.45%
0.776 0.886 14.28% 0.863 11.28% 0.841 846% 0.817 534 %
0.738 0.850 1521 % 0.834 13.07% 0.816 10.57% 0.795 7.77%
0.796 0.870 930% 0.858 7.77% 0.847 638% 0.834 473 %
0.896 0918 244 % 0914 201% 0.910 156% 0.906 1.03%
0.979 0.987 -424% 0.951 -282% 0.962 -1.777% 0.968 -1.08%
0.977 0.908 -7.06 % 0.933 -451% 0.950 -2.82% 0.961 -1.61%
0.987 0.907 -8.05% 0.941 -467% 0.961 -260% 0.974 -132%
0.992 0.908 -843% 0.946 -456% 0.968 -2.36% 0.981 -1.10%

all 0.978 0.908 -715% 0.940 -3.89% 0.958 -2.01% 0.969 -0.93 %
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