
Adaptation of Offline Vertical Selection Predictions in the
Presence of User Feedback

Fernando Diaz
Yahoo! Labs Montreal

1000 Rue de la Gauchetiere
Suite 2400

Montreal, QC H3M4W5
diazf@yahoo-inc.com

Jaime Arguello
∗

Language Technologies Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

jaime@cs.cmu.edu

ABSTRACT
Web search results often integrate content from specialized
corpora known as verticals. Given a query, one important
aspect of aggregated search is the selection of relevant ver-
ticals from a set of candidate verticals. One drawback to
previous approaches to vertical selection is that methods
have not explicitly modeled user feedback. However, pro-
duction search systems often record a variety of feedback in-
formation. In this paper, we present algorithms for vertical
selection which adapt to user feedback. We evaluate algo-
rithms using a novel simulator which models performance of
a vertical selector situated in realistic query traffic.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Miscella-
neous

General Terms
Algorithms

Keywords
vertical selection, distributed information retrieval, resource
selection, aggregated search, user feedback, simulation

1. INTRODUCTION
Traditional web search engines retrieve a ranked list of

URLs in response to a user’s query. Increasingly, search re-
sults pages include content from specialized sub-collections;
this model has been referred to as aggregated search [18].
These sub-collections—referred to as verticals—include non-
text media collections such as images and videos as well as
genre-specific subsets of the web such as news and blogs.
Given a query, relevant vertical content is often displayed

∗Work conducted at Yahoo! Labs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’09, July 19–23, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-483-6/09/07 ...$10.00.

inauguration search

News Results for Inauguration

•Online inauguration videos set records CNN - 3 hours ago

•Castro watched inauguration, Argentine leader says CNN - 3 hours ago

•Photographer: Inauguration like no moment I've ever witnessed CNN - 4 hours ago

Inauguration Day - Wikipedia
The swearing-in of the President of the United States occurs upon the commencement of
a new term of a President of the United States. The United States Constitution mandates
that the President make the following oath or...
http://en.wikipedia.org/wiki/United_States_presidential_inauguration

Joint Congressional Committee on Inaugural Ceremonies
Charged with planning and conducting the inaugural activities at the Capitol: the
swearing-in ceremony and the luncheon honoring the President and Vice President.
http://inaugural.senate.gov

Inauguration Day 2009
Official site for the 2009 Inauguration of Barack Obama. Provides information about
events, tickets, and inaugural balls and parades.
http::inaugural.senate.gov/2009

Inaugural Addresses of the Presidents of the United States
From George Washington's first address in 1789 to the present. Includes a note on the
presidents who took the oath of office without a formal inauguration.
http://www.bartleby.com/124

Figure 1: Aggregated content. Vertical content pre-
sented in a display above general web results.

as a self-contained element of the search result page (Figure
1).

Vertical selection can be performed through hand-crafted
rules or through machine learned query classifiers [3, 15].
These approaches represent queries in a high-dimensional
feature space. Using a set of example queries, one can train
a statistical model which predicts query intent given query
features. By carefully choosing features, models can gen-
eralize from the training set to new queries. Features may
include either lexical query features (e.g. query terms) or
non-lexical query features (e.g. detected entity types).

Information retrieval systems, once in operation, can gather
a large amount of user feedback which can be used to cor-
rect vertical selection errors. For example, in web search,
measuring user activities such as clicks, timeouts, and refor-
mulations can provide valuable—albeit noisy—feedback [20,
13]. Machine learned approaches (as discussed in the exist-
ing literature) would require manually mining new training
data and periodically retraining a model with mined data.
Even if retrained, due to the statistical and feature-based
nature of these classifiers, there is no guarantee that future
occurrences of new training queries will be correctly classi-

323

fied. As a result, system designers often need to heuristically
construct ‘fail-safe’ dictionaries.

In this paper, we present models which combine a proba-
bilistic query classifier (similar to those described in existing
literature) with online user feedback. We will demonstrate
that our methods significantly improve accuracy of intent
detection. The generality of our problem definition and
approaches present opportunities for further refinement as
well as application to other federated search domains. Fur-
thermore, we propose a simulation framework for evaluating
vertical selection using parameters grounded in commercial
query logs.

2. PREVIOUS WORK
Despite the increasing integration of vertical content with

web search results, relatively few research papers address
this topic. Previous work has addressed the integration of
content from shopping [15], news [10], and job [15] verti-
cals. These authors approach vertical selection as a binary
classification task and evaluate performance on independent
binary problems. Our work builds on these results by ex-
panding the set of verticals and situating evaluation in a
stream of queries with potentially multiple relevant verti-
cals.

Distributed information retrieval refers to the task of gen-
erating a single ranked list from multiple sub-collections [6].
One important sub-task of distributed information retrieval,
resource selection, refers to deciding which sub-collections to
search given a user’s query. If we consider verticals to be the
sub-collections of interest, distributed information retrieval
techniques can be directly applied to vertical selection. Our
work extends resource selection by introducing user feedback
and a simulated evaluation.

More generally, query classification refers to techniques
for automatically matching queries to some predefined set
of categories. Some query classification work has focused
on classifying queries into topical categories, such as games,
business, and health [23, 5, 15]. Our work extends query
classification by firmly grounding categories in vertical con-
tent, introducing user feedback, and providing an evaluation
situated in a search task.

Detecting and exploiting user feedback has been proposed
for a variety of sub-tasks of web search. Joachims proposed
using click-through data in order to learn good ranking func-
tions [12]. Radlinski et al. use a multi-armed bandit al-
gorithm to actively adapt retrieval results to gather feed-
back and improve ranking functions [19]. In the context of
search advertising, approaches focus on explicitly modeling
the click-through rate of query-advertisement pairs, in part
because revenue is directly related to user clicks [21, 7]. Our
work focuses on relevance rather than revenue and verticals
rather than documents or advertisements.

Finally, our use of simulation for evaluation has precedent
in document retrieval. The use of deterministic simulation
underlies tasks such as relevance feedback, information fil-
tering, and topic tracking; our work is more related to para-
metric simulation. Although Cooper first proposed a system
for randomly simulating queries and documents [8], Griffiths
was the first to estimate simulation parameters from empir-
ical data [11]. Tague et al. simulated documents, queries,
and relevance judgments using Cranfield II and Medlars cor-
pora to estimate model parameters [25]. Parametric simula-
tion has also been used to evaluate information filtering sys-

tems [17] and relevance feedback methods [26]. Azzopardi et
al. used document language models to automatically create
known-item relevance judgments [4]. Our work most closely
resemble that of Acharya et al. who used a query and click
simulator to evaluate web advertisement placement decisions
[1]. Unlike these simulators, we ground the parameters of
our model in a mix of both manually labeled data (in the
spirit of deterministic simulation) and parametric simulation
based on query log statistics.

3. PROBLEM OVERVIEW
Assume we have a stream of queries being submitted by

users to the search engine. Our search results page always
presents results from the web (i.e. “ten blue links”). In addi-
tion to a web index, the system also has access to k verticals.
The result of issuing the query to a vertical can be embed-
ded in the search results page (e.g. Figure 1). In this work,
we consider the situation where up to one vertical display
can be integrated above web results. Reading the page from
top to bottom, the user can be satisfied by the vertical con-
tent (if present) or the generic web results or neither. The
user then communicates satisfaction to the system (we will
elaborate on the nature of this feedback in Section 5.2). Our
objective is to maximize the user satisfaction by presenting
the appropriate vertical display; this includes the presenta-
tion of no display when the user is best satisfied by general
web results.

4. ALGORITHM
In this section, we will describe a model which, given

a query, predicts its vertical intent. The features of this
model are non-lexical, allowing it to generalize beyond train-
ing queries. This model, once in operation, does not adapt
to user feedback. Therefore, we refer to it as the offline
model. In Section 4.2, we will describe several methods for
combining user feedback and offline predictions. In Section
4.3, we present a method for incorporating information from
related queries. Finally, in Section 4.4, we present a method
for increasing robustness through randomization.

4.1 Vertical Selection with Offline Training
Our off-line model derives evidence from vertical content,

vertical query logs, and the query string. Vertical content
evidence includes classic distributed information retrieval
and performance prediction metrics. Vertical query logs can
be used to determine how similar a candidate query is to
queries issued directly to the vertical. Finally, query string
features include boolean evidence such as regular expressions
and dictionaries believed to correlate with vertical intent. A
more complete description of these features can be found in
[3].

We would like to use these three classes of features in or-
der to predict which vertical display—if any—to present to
the user. Therefore, we have k+ 1 potential vertical intents,
one for each vertical and one for “no relevant vertical”. Be-
cause our features do not refer to the actual query tokens,
we can expect new queries to be correctly predicted to the
extent that there are correlations between these features and
vertical intent.

Given a set of queries manually labeled with vertical in-
tents, we can train a statistical model to predict the relevant
verticals for new queries. In particular, we would like the

324

model to compute the probability that a vertical is relevant
given a query. We will model this as a set of k+ 1 Bernoulli
random variables, each modeled in turn by a separate logis-
tic regression. In our case, the explanatory variables are our
features. If we train k + 1 logistic regression models, then,
given a query, we can predict the probability of success of
each of the k+ 1 trials. For query q and vertical v, let πvq be
the probability of that vertical being relevant as estimated
by our logistic regression model. Given a query, the pre-
dicted vertical is argmaxvπ

v
q . This is equivalent to the tech-

nique of training k+ 1 one-versus-all binary classifiers often
used for multiclass learning problem. Although we adopt
logistic regression as our base classifier, any binary classifier
can be used. Algorithms in subsequent sections only require
that the classifier output a probability for each vertical.

4.2 Adaptation in the Presence of Feedback
Notice that the model in the previous section makes pre-

dictions only dependent on the query and does not change
with user feedback. Assume we have some method for de-
tecting the user satisfaction or dissatisfaction with the ver-
tical display presented. In web search, satisfaction may be
measured by a function of clicks or dwell time and dissat-
isfaction may be measured by a function of skips, reformu-
lation, or abandonment [13, 20]. In this section, we will
provide algorithms for adapting model predictions in the
presence of binary user feedback signals. Although we leave
the treatment of non-binary signals such as probabilities or
real values for future work, we will address the robustness
of our models to signal unreliability and noise in our evalu-
ation.

4.2.1 Multiple Beta Prior
If we assume that the relevance of each vertical can be

represented as a Bernoulli random variable, then the conju-
gate prior is the Beta distribution. That is, we model each
probability of relevance of a vertical to a query, pvq , as being
sampled from a Beta distribution [10]. Mathematically,

pvq ∼ Beta(avq , b
v
q)

The parameters avq and bvq control the shape of our prior
distribution over the probability that vertical v is relevant.
In practice, we use the offline model probability, πvq , in order
to select these parameters,

avq = µπvq bvq = µ(1− πvq)

where µ is a hyperparameter of our model. A large value
for µ will concentrate the distribution around πvq . A small
value for µ will ‘spread out’ this distribution.

Assume we have positive and negative feedback informa-
tion for a query-vertical pair. Let Rvq be the number of

positive impressions (e.g. clicks) and Rvq be the number of
negative impressions (e.g. skips). Then, the posterior, given
data from displays presented, is also a Beta distribution with
a posterior mean of,

p̃vq =
Rvq + µπvq
Vvq + µ

(1)

where Vvq = Rvq + Rvq represents the number of times the
vertical display v was presented for query q. For small values
of µ, the model will be very sensitive to feedback from the
user. For large values, the model will rely on πvq more than
feedback.

4.2.2 Logistic Normal Prior
Alternatively, we can use a logistic normal prior to model

user feedback [2]. In the context of information retrieval,
this model was originally proposed for adaptation of docu-
ment retrieval scores to user feedback [14]. We will briefly
review the model and adapt notation for vertical selection.
A more complete derivation can be found in references.

Assume that t − 1 queries have been issued to the sys-
tem and we wish to predict the vertical relevance for the
next query. Define two t × k random matrices W and W.
The elements of these matrices are sampled from a single
multivariate normal,

W,W ∼ N2tk(η,Σ) (2)

where η is a 2tk × 1 vector of means and Σ is a 2tk × 2tk
covariance matrix. At time t, define pvq as,

pvq =
exp(Wtv)

exp(Wtv) + exp(W tv)
(3)

The prior mean at time t can be written as a function of
η and Σ. However, given covariances Σ we can select η so
that the prior mean matches a target value. In this work,
we will define η so that the prior means equal πvq .

The posterior mean after observing t − 1 queries can be
derived as,

p̃vq =
πvq exp(avq)

πvq exp(avq) + (1− πvq) exp(bvq)
(4)

avq =

t−1X
i=1

kX
j=1

Vji
“
RjiCov(Wtv,Wij) +RjiCov(Wtv,W ij)

”

bvq =

t−1X
i=1

kX
j=1

Vji
“
RjiCov(W tv,W ij) +RjiCov(W tv,Wij)

”
where Vvt is a boolean variable indicating whether vertical v
was presented at time t; Rvt and Rvt are boolean variables
indicating whether a vertical v received positive or negative
feedback at time t.

Notice that the estimate in Equation 4 only requires two
columns of the covariance matrix, Σ, those associated with
Wtv and W tv. We will define these covariances as,

Cov(Wtv,Wij) = Cov(W tv,W ij)

=

(
1 if qt = qi and v = j

0 otherwise
(5)

Cov(Wtv,W ij) = Cov(W tv,Wij)

=

(
σ

Vj
qi

if qt = qi and v 6= j

0 otherwise
(6)

where qi is the query issued at time i. Equation 5 incorpo-
rates feedback from previous displays of v for qt. Equation
6 incorporates feedback from previous displays of compet-
ing verticals for qt. The parameter σ controls the positive
contribution of negative feedback on competing verticals to
a vertical’s probability of relevance. When σ is large, nega-
tive feedback on competing verticals positively affects a ver-
tical’s probability of relevance and vice versa. This näıvely
assumes that all verticals are negatively correlated, a fact
which is almost certainly untrue. However, we have empir-
ically noticed that queries tend to have few (< 3) relevant
verticals.

325

We use a relatively simple covariance function here. More
elaborate covariance functions may incorporate temporal prox-
imity for verticals with non-stationary relevance (e.g. news).
In the next section, we will use this covariance matrix to en-
code information from related queries.

We can use Equations 5 and 6 in order to rewrite the
exponents in Equation 4,

avq = Rvq +
X
v′ 6=v

σ

Vv′q′
Rv

′

q bvq = Rvq +
X
v′ 6=v

σ

Vv′q′
Rv

′
q

4.3 Using Information from Similar Queries
We have demonstrated how to use feedback for a query to

estimate pvq . However, a vertical’s probability of being rele-
vant is also likely to be related to the feedback on topically
related queries. For example, consider a situation where we
have seen many query events for “obama inauguration”, pro-
viding a reliable estimate of pvq for all v. Then, given the
new query “barack obama inauguration”, we have informa-
tion about pvq′ if we know that these two queries are related.

There are several methods for detecting the similarity be-
tween queries. In this work, we adopt a corpus-based sim-
ilarity measure using language models of retrieved results.
Specifically, we create a language model by interpolating the
top retrieved document language models weighted by their
retrieval scores [9]. This provides a query language model for
each query. Given two query language models, we compare
two queries by comparing their associated language models
using the Bhattacharyya correlation. The Bhattacharyya
correlation ranges between 0 and 1 and is defined as,

B(qi, qj) =
X
w∈V

q
P (w|θqi)P (w|θqj) (7)

This approach was previously used for news vertical selection
[10] and similar methods have been used for query sugges-
tion and advertisement placement tasks [22, 16]. We note
that while the Bhattacharyya similarity measure uses only
P (w|θQ), other similarity measures based on time or term
overlap can be used or combined with B.

How we precisely incorporate information from similar
queries depends on the prior we are using. For the multiple
Beta model, our assumption is that if B(q, q′) is large, then
pvq ≈ pvq′ . We incorporate this information into the candi-
date query’s prior. Specifically, define the nearest-neighbor
estimate of pvq as,

p̂vq =
1

Zq

X
q′

B(q, q′)p̃vq′ (8)

where Zq =
P
q′ B(q, q′). We then compute a compound

prior for pvq as,

π̂vq = (1− λq)πvq + λq p̂
v
q (9)

where λ ∈ [0, 1] controls the importance of the nearest-
neighbor estimate relative to the offline model estimate. No-
tice that the normalization in Equation 8 discards the mag-
nitude of the similarity. That is, the relative weights for
k queries with constant similarity ∀q′ : B(q, q′) = .9 is the
same as weights for ∀q′B(q, q′) = .1. In order to preserve
the absolute confidence, we define λq = λ×maxq′B(q, q′).

We incorporate similar queries in the logistic normal prior
model by adding elements to Σ. Assume for qi = qi′ , covari-
ances are described in Equations 5 and 6. For cases where

qi 6= qi′ ,

Cov(Wtv,Wij) = Cov(W tv,W ij)

=

(
λB(qt,qi)
Vv

qi

if v = j

0 if v 6= j
(10)

Cov(Wtv,W ij) = Cov(W tv,Wij)

=

(
0 if v = j
λσB(qt,qi)

Vj
qi

if v 6= j
(11)

where λ controls the contribution from similar queries and
σ is defined in the previous section. We can use Equations
10 and 11 in order to rewrite the exponents in Equation 4,

âvq = avq + λ
X
q′ 6=q

B(q, q′)

0@Rvq′
Vvq′

+
X
v′ 6=v

σ

Vv′q′
Rv

′

q′

1A
b̂vq = bvq + λ

X
q′ 6=q

B(q, q′)

0@Rvq′
Vvq′

+
X
v′ 6=v

σ

Vv′q′
Rv

′

q′

1A
4.4 Randomizing Decisions

Sometimes, we would like to present a vertical display for
a query even though it is not predicted to be the display
with the highest probability. The motivation for this may
be to gather a small amount of feedback without devastating
system performance. To this end, we can present random
displays for queries with some probability, ε. This approach
is referred to as the ε-greedy approach [24].

The ε-greedy approach aggressively presents verticals re-
gardless of what we have learned about the vertical probabil-
ities. We can incorporate this knowledge by exploiting the
posterior means across verticals. Specifically, we will sample
our decision from a multinomial over verticals derived from
our estimated vertical relevance probabilities, p̃vq . In our ex-
periments, we use a Boltzmann distribution to construct the
multinomial,

P (v) =
1

Z exp

„
p̃vq
τ

«
(12)

where Z =
P
v exp

“
p̃v

q

τ

”
and τ > 0 controls the uniformity

of the random vertical selection. As τ → ∞, the vertical
selection becomes more random. At τ → 0, the vertical
selection becomes greedy. In reinforcement learning, state
space exploration is often performed using a Boltzmann dis-
tribution [24].

5. METHODS AND MATERIALS

5.1 Data
Our data set consists of 25195 queries sampled from a web

search query log. Human editors were provided a list of 18
verticals (Table 1) and asked to assign from zero to six rel-
evant verticals for each query. Queries were automatically
spell corrected and normalized by down-casing and removing
punctuation. The vertical distribution is shown in Table 1.
About 26% of queries were assigned “no relevant vertical”,
indicating that these were best served by general web con-
tent. Of those assigned at least one relevant vertical, the
average number of verticals assigned per query was 1.49. Of
these, 60% were assigned one vertical, 31% were assigned

326

autos 3.0% music 4.6%
directory 4.4% news 5.1%

finance 2.6% reference 15.4%
games 2.6% shopping 20.3%
health 4.3% sports 3.3%

jobs 1.5% travel 8.7%
image 6.0% tv 2.7%
local 19.1% video 3.1%
maps 1.1% no relevant vertical 26.3%

movies 2.3%

Table 1: Percentage of queries assigned each verti-
cal. Percentages do not sum to one because queries
can be assigned more than one relevant vertical.

two verticals, and 9% were assigned more than two. We
trained our offline model using 10 fold cross-validation on
all of the labeled queries. We used a snapshot of Wikipedia
as the corpus to compute query similarity.

5.2 Query Simulation
Because we are interested in the adaptation of an offline

model to online feedback, we used our offline data to con-
struct a query simulator. First, we retrospectively analyzed
the query frequency of each of the queries in our data set.
We then estimated the parameters of a multinomial over
our 25195 queries using the relative frequency data; call this
multinomial θQ. We found that this distribution was skewed
and heavy-tailed, a property common in many real query
logs.

We would like to simulate a user submitting a query and
having a particular intent chosen from those listed in Ta-
ble 1. In the case of “no relevant vertical”, we assume that
the user is satisfied by general web results and, therefore
we refer to this as the “Web” vertical. In order to simulate
the generation of vertical intent, for each query, q, we esti-
mate a multinomial over verticals using the manual judge-
ments with uniform probability over relevant verticals and
zero probability for non-relevant verticals; call this multino-
mial θqV .

The simulation first samples a query, qt, from θQ and then
one of qt’s relevant verticals from θqt

V . We repeat this process
for 10 million query samples, evaluating performance at the
end of the simulation. We present average and standard
deviations of metrics over 10 runs of the simulator. We
found 10 runs to be sufficient to achieve statistically different
performances in algorithms.

So far, our simulated user provides perfect feedback. If the
relevant vertical is displayed, she provides positive feedback;
if a non-relevant vertical is displayed, she provides negative
feedback. In practice, measuring user feedback is imperfect
and signals are noisy. If a user is satisfied, sometimes we
incorrectly detect negative feedback; if a user is unsatisfied,
sometimes we incorrectly detect positive feedback. At other
times, the system may have predicted the correct intent but
the interface may have resulted in an incorrect user response.

Noisy feedback influences two aspects of system develop-
ment: adaptation and evaluation. In the case of adaptation,
although we expect performance to decrease in the presence
of noisy feedback, we prefer adaptation algorithms which
are robust to noisy feedback. In the case of evaluation,
noisy feedback can misrepresent performance. This is one
drawback we see with relevance metrics based exclusively on
noisily detected user feedback.

Using a simulation allows us to decouple feedback signals
and the ‘true’ user feedback variable. Because we know the
true vertical intents, we can evaluate using a noiseless signal
while introducing noise only in the feedback. We introduce
noise by defining a probability, δ, of correctly detecting user
feedback. When a correct display is presented, the system
detects positive feedback with this probability; similarly, it
detects negative feedback with this probability. The simu-
lation is more formally defined in Appendix A.

5.3 Evaluation
Assume we have a stream of queries indexed by t where

yt ∈ V ∪{Web} is the user’s intent. The system’s prediction
is ft ∈ V ∪ {Web}. We represent the user’s utility from the
presentation as,

u(yt, ft) =

8><>:
1 yt = ft

α (yt = Web) ∧ (ft 6= Web)

0 otherwise

where 0 ≤ α ≤ 1 represents the user’s discounted utility
by being presented a display above the desired web results.
When α is large, a user’s satisfaction is not affected by in-
jecting the display above the desired web results. When α
is small, a user’s satisfaction is degraded. When α = 0, a
user is so distracted by the display that there is no satisfac-
tion by the web results. In our experiments, we use α = 1

2
which is similar to the discount often used in measures such
as NDCG.

For an individual query, we compute the average utility
as,

Uq =
1

|Tq|
X
t∈Tq

u(yt, ft)

where Tq is the set of times query q was issued. Over all
queries, we define the macro-averaged utility as

Umacro =
1

|Q|
X
q∈Q

Uq (13)

We adopt a macro-averaged metric because a micro-averaged
metric would be dominated by relatively few queries.

About 30% of our queries are labeled with more than one
relevant vertical. For these queries, our simulator selects one
relevant vertical from the relevant set at each step. Because
we do not condition the sampling on any variable, the best a
system can do is to either learn one of the relevant verticals
and select that vertical every time or learn all of the relevant
verticals and randomly select from them. Both approaches
converge to an average utility less than one. For our col-
lection, the macro-averaged utility of such a selector over
all queries is expected to be 0.843. Therefore, we normal-
ize Equation 13 by this factor. The macro-averaged utility
over queries with multiple relevant verticals is expected to
be 0.461. When evaluating only on queries with multiple
intents, we normalize by this factor.

6. RESULTS
In our discussion, we will refer to the multiple Beta model

as MB and the logistic normal model as LN. Superscripts
indicate the prior used by the model. The prior π refers to
the model described in Section 4.1. The prior U refers to
a uniform prior which assigns πvq = 1

2
for all query-vertical

327

µ δ = 0.95 δ = 0.90 δ = 0.75
0.10 0.872± 0.002 0.819± 0.001 0.679± 0.003
0.25 0.878± 0.002 0.832± 0.002 0.700± 0.002
0.50 0.877± 0.002 0.836± 0.001 0.718± 0.002
0.75 0.873± 0.001 0.834± 0.002 0.726± 0.002
0.90 0.871± 0.001 0.833± 0.001 0.730± 0.002
1.00 0.870± 0.001 0.832± 0.001 0.731± 0.001
2.00 0.858± 0.001 0.822± 0.001 0.733± 0.001
3.00 0.848± 0.001 0.814± 0.002 0.731± 0.002
4.00 0.841± 0.001 0.808± 0.002 0.728± 0.001
5.00 0.836± 0.001 0.802± 0.001 0.726± 0.001

Table 2: Normalized Umacro for MBπ runs.

σ δ = 0.95 δ = 0.90 δ = 0.75
0.10 0.886± 0.001 0.880± 0.001 0.851± 0.002
0.20 0.887± 0.001 0.880± 0.001 0.851± 0.001
0.30 0.887± 0.001 0.880± 0.001 0.849± 0.001
0.40 0.888± 0.001 0.881± 0.001 0.849± 0.001
0.50 0.888± 0.001 0.881± 0.001 0.849± 0.001
0.60 0.890± 0.001 0.883± 0.001 0.848± 0.001
0.70 0.890± 0.001 0.883± 0.001 0.848± 0.001
0.80 0.890± 0.001 0.883± 0.001 0.848± 0.001
0.90 0.891± 0.001 0.883± 0.001 0.848± 0.001
1.00 0.891± 0.002 0.883± 0.001 0.848± 0.001

Table 3: Normalized Umacro for LNπ runs.

pairs. The sub-script s indicates the use of similar queries.
Finally, the prefix indicates the randomization method used,
ε for ε-greedy and ‘B’ for Boltzmann.

We begin by comparing the baseline predictor, π, with
those that use feedback information. The static baseline
achieves Umacro of 0.618± 0.001. In Table 2, we present the
performance of MBπ for various settings of µ. We observe
that, for all values of µ, we improve over the baseline. In
Table 3, we show performance of LNπ for various values of
σ. Again, for all values of σ, we improve over the baseline.
While being able to improve using feedback is not surpris-
ing, we note that LNπ always outperforms MBπ, especially
as feedback becomes noisier. We can explain this behav-
ior by inspecting the computation of the posterior mean for
each prior. As evidence is introduced, the posterior for MBπ

(Equation 1) converges toward the true mean. The posterior
for LNπ (Equation 4) converges toward 0 or 1 with relatively
little feedback. The negative correlations between compet-
ing verticals in LNπ further concentrates probability in a
few verticals. For example, assume there is one relevant
vertical for a query. Further, assume that our prior is 0.90
for the relevant vertical and 0.85 for a non-relevant verti-
cal. If δ = 0.75, then our posterior using MBπ converges
to 0.75 for the relevant vertical. The system then has to
also expend interactions to drive the non-relevant vertical’s
posterior below 0.75. LNπ, however, pushes queries towards
extremes and therefore more gracefully handles noise when
evaluating over all queries.

We performed experiments using a uniform prior (table
suppressed due to space constraints). In these experiments,
the best performing setting of µ for MBU resulted in an
average utility of 0.745 ± 0.001 (δ = 0.95), 0.732 ± 0.001
(δ = 0.90), and 0.669 ± 0.001 (δ = 0.75). Observing that
this outperforms the baseline, π, at all values of δ, we may
be tempted to conclude that the training of the logistic re-
gression models is unnecessary. However, the combination
of feedback and the offline model significantly outperforms
the uniform prior. We observed similar results for LNU .

λ δ = 0.95 δ = 0.90 δ = 0.75
0.10 0.879± 0.001 0.837± 0.002 0.718± 0.002
0.25 0.883± 0.001 0.841± 0.001 0.715± 0.002
0.50 0.884± 0.001 0.842± 0.002 0.716± 0.001
0.75 0.884± 0.002 0.841± 0.001 0.708± 0.001
0.90 0.883± 0.002 0.839± 0.001 0.705± 0.002

Table 4: Normalized Umacro for MBπ
s runs.

τ δ = 0.95 δ = 0.90 δ = 0.75
0.005 0.880± 0.001 0.839± 0.001 0.733± 0.001
0.010 0.888± 0.001 0.853± 0.001 0.738± 0.002
0.025 0.896± 0.001 0.877± 0.001 0.773± 0.002
0.050 0.892± 0.001 0.881± 0.001 0.813± 0.001
0.075 0.881± 0.002 0.867± 0.001 0.804± 0.001

Table 5: Normalized Umacro for B-MBπ runs. This
table should be compared with Table 2.

The performance improvement from using similar queries
is significant but slight (Table 4). When more feedback noise
is introduced, gains disappear altogether. This suggests that
similar queries are only useful to the extent that their esti-
mates are accurate. With very noisy feedback, we gain very
little information from related queries. We observed similar
results for LNπ

s .
The improvement from decision randomization depends

on the model prior. Boltzmann randomization significantly
improves MBπ (Table 5) while not affecting LNπ (Table 6).
We alluded to the reason B-MBπ improves performance over
MBπ earlier. Namely, randomization allows the system to
simultaneously adjust estimates toward the true mean. LNπ,
however, quickly converges toward the extreme and therefore
does not require simultaneous adjustment.

We present the best performing runs for all of our algo-
rithms in Table 7. We find that, across values of δ, LNπ

s

tends to perform best. However, similarity information does
not appear to be useful when δ = 0.75. If we use MBπ, then
randomized decision making performs best.

Something interesting happens if we inspect performance
only for queries with multiple relevant verticals (Table 8).
In this situation, the simulator will randomly select between
relevant verticals. Notice that for MB and LN methods in-
dividually, the effects are the same as those observed for
all queries. However, relative performance between the two
priors switches for multiple intent queries. This behavior
results from the aggressive use of feedback in LNπ which is
exponential in the amount of feedback. In the cases where
feedback is split between two relevant verticals, posterior
distributions of relevant verticals will swing from 0 to 1 given
inconsistent vertical feedback.

7. CONCLUSIONS AND FUTURE WORK
We have presented several algorithms for combining user

τ δ = 0.95 δ = 0.90 δ = 0.75
0.005 0.883± 0.001 0.877± 0.001 0.843± 0.002
0.010 0.881± 0.001 0.875± 0.001 0.843± 0.001
0.025 0.881± 0.001 0.873± 0.001 0.841± 0.001
0.050 0.877± 0.001 0.870± 0.001 0.836± 0.001
0.075 0.867± 0.001 0.861± 0.001 0.828± 0.001

Table 6: Normalized Umacro for B-LNπ runs. This
table should be compared with Table 3.

328

δ = 0.95 δ = 0.90 δ = 0.75
π 0.618± 0.001 0.618± 0.001 0.618± 0.001

MBU 0.745± 0.001 0.732± 0.001 0.669± 0.001
MBπ 0.878± 0.002 0.836± 0.001 0.733± 0.001
MBπs 0.885± 0.002 0.843± 0.002 0.730± 0.003
ε-MBπ 0.870± 0.001 0.835± 0.002 0.752± 0.001
B-MBπ 0.896± 0.001 0.881± 0.001 0.816± 0.001

LNU 0.722± 0.001 0.709± 0.001 0.650± 0.001
LNπ 0.891± 0.002 0.883± 0.001 0.851± 0.001
LNπs 0.894± 0.002 0.887± 0.002 0.853± 0.002
ε-LNπ 0.891± 0.001 0.883± 0.001 0.851± 0.001
B-LNπ 0.887± 0.001 0.880± 0.001 0.847± 0.001

Table 7: Normalized Umacro for all queries. Perfor-
mance using optimal parameter settings.

δ = 0.95 δ = 0.90 δ = 0.75
π 0.681± 0.002 0.681± 0.002 0.681± 0.002

MBU 0.657± 0.002 0.636± 0.002 0.549± 0.001
MBπ 0.883± 0.002 0.846± 0.002 0.744± 0.002
MBπs 0.896± 0.004 0.855± 0.002 0.744± 0.003
ε-MBπ 0.885± 0.004 0.846± 0.002 0.748± 0.002
B-MBπ 0.907± 0.003 0.889± 0.003 0.826± 0.003

LNU 0.510± 0.001 0.492± 0.002 0.421± 0.002
LNπ 0.781± 0.003 0.772± 0.002 0.727± 0.003
LNπs 0.796± 0.003 0.785± 0.003 0.735± 0.003
ε-LNπ 0.781± 0.004 0.772± 0.003 0.727± 0.003
B-LNπ 0.755± 0.002 0.748± 0.003 0.701± 0.002

Table 8: Normalized Umacro for multiple intent
queries.

feedback with offline classifier information. Our results demon-
strate that, although feedback-only models can outperform
offline-only models, combining the two results in significant
improvements. We found that using a logistic normal prior
outperforms using multiple beta priors across all queries.
However, we also found that the multiple beta priors with
randomized decision making provides stable performance for
both single and multiple intent queries. Finally, we pre-
sented a query simulation and vertical feedback model which
decouples evaluation signals and feedback signals, allowing
us to accurately measure model robustness to feedback de-
tection noise.

There are several directions in which to extend this work.
First, we assumed that a search results page could only in-
clude a single vertical display. In practice, multiple displays
can be stacked above the web results or blended elsewhere
in the ranked list. Second, we have attempted to define and
evaluate our algorithms with generalization in mind. We
believe there is merit in applying these algorithms to other
distributed information retrieval and federated search tasks.
Third, we are interested in exploring domains where our sim-
ulator assumptions—in particular with respect to query and
vertical distributions—do not hold. For example, we have
introduced a fixed noise parameter, assuming that we detect
positive and negative feedback equally well and that we de-
tect feedback for different vertical displays equally well. In
reality these noise rates are likely to be dependent on the
type of feedback and vertical. Fourth, we also would like
to modify our algorithms to deal with non-binary feedback,
such as that statistically detected using implicit feedback

features. Finally, although we believe that our simulation
provides an attractive, noiseless evaluation, we acknowledge
that the efficacy of these algorithms can only be confirmed
in real query traffic. It is important, though, to be cautious
about non-uniform noise in the evaluation signal, be it clicks
or some other measurement.

8. ACKNOWLEDGMENTS
We would like to thank Jean François Beaumont, Daniel

Boies, Hugues Bouchard, Jean François Crespo, Deborah
Donato, Rosie Jones, Remi Kwan, Vanessa Murdock, Jian-
Yun Nie, Jean François Paiement, and Alexandre Rochette
for helpful discussions and feedback. This work was sup-
ported in part by the NSF grant IIS-0841275 and a generous
gift from Yahoo!. Any opinions, findings, conclusions, and
recommendations expressed in this paper are the authors’
and do not necessarily reflect those of the sponsors.

9. REFERENCES
[1] S. Acharya, P. Krishnamurthy, K. Deshpande, T. Yan, and

C.-C. Chang. A simulation framework for evaluating
designs for sponsored search markets. In WWW 2007
Workshop on Sponsored Search Auctions, 2007.

[2] J. Aitchison and S. M. Shen. Logistic-normal distributions:
Some properties and uses. Biometrika, 67(2):261–272,
August 1980.

[3] J. Arguello, F. Diaz, J. Callan, and J.-F. Crespo. Sources of
evidence for vertical selection. In SIGIR 2009, 2009.

[4] L. Azzopardi, M. de Rijke, and K. Balog. Building
simulated queries for known-item topics: an analysis using
six european languages. In SIGIR 2007, pages 455–462,
2007.

[5] S. M. Beitzel, E. C. Jensen, O. Frieder, D. D. Lewis,
A. Chowdhury, and A. Kolcz. Improving automatic query
classification via semi-supervised learning. In ICDM 2005,
pages 42–49, 2005.

[6] J. Callan. Distributed information retrieval. In W. B. Croft,
editor, Advances in Information Retrieval. 2000.

[7] M. Ciaramita, V. Murdock, and V. Plachouras. Online
learning from click data for sponsored search. In WWW
2008, pages 227–236, 2008.

[8] M. D. Cooper. A simulation model of an information
retrieval system. Information Storage and Retrieval,
9(1):13–32, 1973.

[9] S. Cronen-Townsend, Y. Zhou, and W. B. Croft. Predicting
query performance. In SIGIR 2002, pages 299–306, 2002.

[10] F. Diaz. Integration of news content into web results. In
WSDM 2009, 2009.

[11] J.-M. Griffiths. The computer simulation of information
retrieval systems. PhD thesis, University College London,
1977.

[12] T. Joachims. Optimizing search engines using clickthrough
data. In KDD 2002, pages 133–142, 2002.

[13] R. Jones and K. L. Klinkner. Beyond the session timeout:
automatic hierarchical segmentation of search topics in
query logs. In CIKM 2008, pages 699–708, 2008.

[14] P. J. Lenk and B. D. Floyd. Dynamically updating
relevance judgements in probabilistic information systems
via users’ feedback. Management Science,
34(12):1450–1459, December 1988.

[15] X. Li, Y.-Y. Wang, and A. Acero. Learning query intent
from regularized click graphs. In SIGIR 2008, pages
339–346, 2008.

[16] D. Metzler, S. T. Dumais, and C. Meek. Similarity
measures for short segments of text. In ECIR 2007, pages
16–27, 2007.

[17] J. Mostafa, S. Mukhopadhyay, and M. Palakal. Simulation
studies of different dimensions of users’ interests and their

329

impact on user modeling and information filtering.
Information Retrieval, 6:199–223, April 2003.

[18] V. Murdock and M. Lalmas, editors. Proceedings of the
SIGIR Workshop on Aggregated Search, 2008.

[19] F. Radlinski, R. Kleinberg, and T. Joachims. Learning
diverse rankings with multi-armed bandits. In ICML 2008,
pages 784–791, 2008.

[20] F. Radlinski, M. Kurup, and T. Joachims. How does
clickthrough data reflect retrieval quality? In CIKM 2008,
pages 43–52, 2008.

[21] M. Richardson, E. Dominowska, and R. Ragno. Predicting
clicks: estimating the click-through rate for new ads. In
WWW 2007, pages 521–530, 2007.

[22] M. Sahami and T. D. Heilman. A web-based kernel
function for measuring the similarity of short text snippets.
In WWW 2006, pages 377–386, 2006.

[23] D. Shen, J.-T. Sun, Q. Yang, and Z. Chen. Building bridges
for web query classification. In SIGIR 2006, pages 131–138,
2006.

[24] R. Sutton and A. Barto. Reinforcement Learning. 1998.

[25] J. Tague, M. Nelson, and H. Wu. Problems in the
simulation of bibliographic retrieval systems. In SIGIR
1980, pages 236–255, 1980.

[26] R. W. White, I. Ruthven, J. M. Jose, and C. J. van
Rijsbergen. Evaluating implicit feedback models using
searcher simulations. TOIS, 23(3):325–361, July 2005.

APPENDIX
A. QUERY SIMULATOR

Our simulator is comprised of two parts: the intent sim-
ulator and the feedback detector. At time t, the intent sim-
ulator (Figure 2) first selects a labeled query, qt, from the
multinomial over queries, θQ, (Line 2) and then a relevant
vertical from the query-specific multinomial over verticals,
θqt
V (Line 3). The retrieval system is asked to make a vertical

prediction for qt (Line 4). We evaluate the utility gain us-
ing the true relevant vertical and the prediction (Lines 5-6).
Unlike click-based evaluation, there is no noise in evaluation.

The feedback detector (Figure 3) allows the experimenter
to introduce noise into the system’s feedback detection us-
ing the parameter δ. Our simulated user reads the results
page (Figure 1) from top to bottom. If the user is satisfied
by the displayed vertical, we provide positive feedback with
probability δ (Lines 4-6); if the user is not satisfied by the
displayed vertical, we provide positive feedback with prob-
ability 1 − δ (Lines 7-9). If the system presented a vertical
display and the simulated user did not provide positive feed-
back on the display, then this implies negative feedback on
the display (Line 10). This appeals in spirit to Joachim’s
work in preference mining from clicks [12]. In the event
that the display did not receive feedback, the simulated user
potentially provides positive feedback on the general web re-
sults (Lines 14-21); the logic follows the logic in Lines 3-10.

Simulate-Queries(T, δ)

1 t← 0
2 repeat qt ∼ θQ � sample query
3 yt ∼ θqt

V � sample vertical
4 ft ← f(qt) � make prediction

5 g[qt]← g[qt] + u(yt, ft) � utility gain
6 n[qt]← n[qt] + 1 � query count

7 Simulate-Noisy-Feedback(ft, yt, δ)

8 t← t+ 1
9 until t = T

10 Umacro ← 1
|Q|

P
q∈Q(g/n)[q]

Figure 2: Query simulator pseudocode.

Simulate-Noisy-Feedback(ft, yt, δ)

1 r ∼ U(0, 1)
2 n ∼ U(0, 1)

3 Vft
q ← Vft

q + 1 � increment view

4 if (ft = yt) ∧ (r < δ)

5 then Rft
q ←Rft

q + 1 � correct pos. feedback
6 return

7 if (ft 6= yt) ∧ (n > δ)

8 then Rft
q ←Rft

q + 1 � incorrect pos. feedback
9 return

10 Rft
q ←R

ft
q + 1 � neg. feedback

11 if ft 6= Web � a display was presented

12 then r ∼ U(0, 1)
13 n ∼ U(0, 1)

14 VWeb
q ← VWeb

q + 1 � increment Web view

15 if (yt = Web) ∧ (r < δ)
16 then RWeb

q ←RWeb
q + 1 � correct pos.

17 return � feedback

18 if (yt 6= Web) ∧ (n > δ)
19 then RWeb

q ←RWeb
q + 1 � incorrect pos.

20 return � feedback

21 RWeb
q ←RWeb

q + 1 � neg. feedback

Figure 3: Noisy feedback simulator pseudocode.

330

