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Abstract

Traditional evaluation of information access systems has focused
primarily on average utility across a set of information needs (in-
formation retrieval) or users (recommender systems). In this work,
we argue that evaluating only with average metric measurements
assumes utilitarian values not aligned with traditions of informa-
tion access based on equal access. We advocate for pessimistic
evaluation of information access systems focusing on worst case
utility. These methods are (i) grounded in ethical and pragmatic
concepts, (ii) theoretically complementary to existing robustness
and fairness methods, and (iii) empirically validated across a set of
retrieval and recommendation tasks. These results suggest that pes-
simistic evaluation should be included in existing experimentation
processes to better understand the behavior of systems, especially
when concerned with principles of social good.
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1 Introduction

Evaluating information access systems that support large popula-
tions of users remains a fundamental area of research. Individual-
level evaluation, the measurement of the utility that an individual
receives from the system in a specific context, has been the fo-
cus of work in metric design familiar to the information retrieval
community. Population-level evaluation refers to making judgments
about a system based on how individual-level utility is distributed
across a group or population of users; the most common approach
to population-level evaluation is to use the arithmetic mean utility
as the measure of system quality. While individual-level evaluation
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metrics can often be empirically validated against human prefer-
ences, population-level evaluation methods often do not have quan-
tifiable signals that can be used for validation. Instead, population-
level evaluation methods often need to be more rigorously validated
for their alignment with normative values about how utility should
be distributed across a population. This is consistent with research
in the recommender systems community seeking to incorporate of
normative values into system evaluation and design [14, 15, 39-41].
Developing evaluation methods with rigorous conceptual and the-
oretical foundations is fundamental to translational work between
system policy and development.

While the arithmetic mean dominates experimental practice,
system design objectives have led to the development of alterna-
tive population-level evaluation methods. Motivated by the need
for robust systems, the TREC Robust Track introduced a number
of population-level aggregations capturing how well systems per-
formed on low-performing queries [38]. As part of the TREC Web
Track, the risk-sensitive retrieval task evaluated systems according
to how they degraded utility relative to a baseline [7]. The retrieval
efficiency community includes tail efficiency (e.g., 95th percentile
query processing time) in evaluations [27]. Moreover, recent calls
from the recommender system community emphasize evaluation
of the distribution of measured metric values over a population
[13] and from the fairness community to the dis-aggregate metric
values across sub-populations [4].

We interrogate average utility and advocate for an alternative
population-level evaluation method focused on worst-case analysis,
which we refer to as pessimistic evaluation. We ground pessimistic
evaluation in existing work in equal information access from the
information science community, which is based on a larger body
of work in fairness. This allows pessimistic evaluation to be based
on well-justified methods from political theory. In particular, we
introduce the use of lexicographic minimum as a theoretically sound
method for pessimistic evaluation.

Our goal is not to demonstrate that pessimistic evaluation domi-
nates existing population-level evaluation based on average system
utility. Rather, we will demonstrate that pessimistic evaluation is
(i) grounded in ethical and pragmatic concepts, (ii) theoretically
complementary to existing robustness and fairness methods, and
(iii) empirically validated across a set of retrieval and recommen-
dation tasks. As such, our goal is to demonstrate that pessimistic
evaluation complements existing population-level evaluation ap-
proaches.

2 Population-level evaluation

Population-level evaluation deals with comparing systems given a
set of utility measurements. In this section, we will introduce the
formal problem of population-level evaluation and then discuss how
we can compare different population-level evaluation methods.
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2.1 Preliminaries

For a specific information access task, given an input request x from
the space of all requests X, a system f (from the space of all systems
F) generates an output (e.g., ranking) with a specific utility (e.g.,
metric value). An input x € X can be a text query, as in traditional
information retrieval; a user item history, as in recommendation; or
a more complex representation such as, for example, a text query
combined with user location information and page view history.
For the purpose of our analysis, we only consider measured metric
values and are agnostic about whether those utilities are attributed
to rankings or strings. So, although a system generates a decision
(e.g., a ranking, an answer string), we are only interested in the
measured utility, computed by an evaluation metric p : XXF — R
defined as a function over the space of all inputs and systems. !

In most situations, we have a distribution 6 over X based on
users’ engagement with the information access system. For exam-
ple, the probability of a certain input may be proportional to the
query frequency in a search engine. In practice, we use a sam-
ple of queries X ~ 6 to evaluate performance. The shorthand
{ix f = Uxexp(x, f) refers to the set of measured utilities for
a system f over a sample X. We use n = |X] to refer to the sample
size.

2.2 Problem Definition

Determining whether a population-level evaluation is appropriate
depends on the population-level objectives of the system designer.
In some cases, a quantifiable downstream objective such as rev-
enue can be used to evaluate different population-level evaluation
methods. In many cases, though, population-level objectives reflect
less well-defined concepts such as fairness or justice. We refer to
this class of objectives as population-level normative values of a
system.

The goal of population-level evaluation is to sort a set of sys-
tems F C ¥ according to the designers population-level objectives.
Assume that, for each f € F, we have measured utility for n in-
puts. One can approach this problem by defining an aggregation
function i : R™ — R that reduces a set of measurements into a
single scalar value (e.g., an average). We can then sort F according
to these aggregate scores. Alternative, one can define an order func-
tion A : R"™ x R"™ — R that generates a scalar value based on a
comparison of two sets of n metric measurements. Note that we
can derive an order function from an aggregation function but not
the other way around.

2.3 Desiderata

Although we can often conduct individual-level metric meta-evaluation

by looking at agreement with a ground truth human preference
(e.g., ‘does the metric ordering agree with a user’s preference?’),
population-level meta-evaluation leans more heavily on theoretical
validation and different methods of empirical validation. In this
study, we consider population-level evaluation desiderata based on

'We adopt common practice in search evaluation and assume that systems and metrics
are deterministic (i.e., p(x, f) will always return the same value). This means that the
measured utility will always be the same for the same request.
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criteria from measurement theory [18], previously used in the nat-
ural language processing [44] and retrieval [11] communities. Sim-
ilar approaches have been used in ranking metric meta-evaluation
[36, 37]. In particular, we will validate a population-level evaluation
method using the following criteria.

Content validity. Content validity determines the degree to which
the population-level evaluation method is aligned with the theoret-
ical constructs we are interested in measuring. To assess content
validity of a method, we determine whether the method is theoreti-
cally consistent with normative values of interest. For example, if
the system designer is interested in high expected utility for users,
then computing the average utility over a set of queries would
be consistent with this value; averaging the utility for subscrib-
ing users only would ignore the expected impact on users with
under-performing queries and not be consistent with the system
designer’s value.

Convergent validity. Convergent validity determines the degree
to which a population-level evaluation method is correlated with
other methods supporting the same normative values. To assess
the convergent validity of a method by, we measure the empirical
correlation between an ordering of F by the new approach with
orderings of F by existing approaches for the same normative value.
For example, if both averaging utility over traffic-weighted queries
and averaging utility over unique queries aim to capture the ex-
pected impact on users, we can measure the correlation between an
ordering of F by averaging traffic-weighted queries with a second
ordering by averaging unique queries. Although higher correlation
provides evidence that a new measure is consistent with estab-
lished measures, perfect correlation obviates the need for the new
approach.

Discriminant validity. Discriminant validity determines the de-
gree to which a population-level evaluation method is uncorrelated
with unrelated methods. To assess the discriminant validity of a
method we measure the empirical correlation between an ordering
of F by the new approach with orderings of F by existing approaches
for different normative values. In this case, we desire lower correla-
tion since it provides evidence that a new measure is different from
established measures for different constructs.

Sensitivity. Sensitivity refers to how well a population-level eval-
uation method can distinguish pairs of systems. A method that is
theoretically sound but not sensitive will not be useful in practical
settings. We assess the sensitivity of an approach by how often it
is unable to distinguish a pair of systems (i.e., the number of tied
systems).

3 Properties of Population-Level Evaluation

Since information access systems are tools used by people and a
metric measurement reflects the utility of a tool to an individual
person, each approach for population-level evaluation makes as-
sumptions about the relative importance of some information needs
or people compared to others. As such, we can interpret specific
normative values about population-level evaluation as reflecting
specific social values. This is consistent with perspectives to infor-
mation access in information science based on distributive justice
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[28] and echoes recent calls from the recommender system com-
munity to reason about the distribution of measured metric values
over a population [13] and from the fairness community to the dis-
aggregate metric values across sub-populations [4]. More generally,
the recommender systems community is increasingly exploring the
incorporation of normative values into design [14, 15, 39-41].

The foundation of a population-level evaluation method is a
normative statement about the population-level objective of the
designer. While most readers will be familiar with using the arith-
metic mean as an aggregation function, in this section, we will
introduce three normative statements covering several objectives
underlying information access system design. This list is far from
exhaustive and the development of appropriate normative values
for information access is an active area of research [24].

3.1 Pareto Property

The first property we are interested in is the behavior of a method
when a single individual’s utility improves. Given two allocations
{}x r and {u}x g with equal utility for |X| — 1 individuals, the
Pareto property requires that a method prefer the allocation with
the higher utility for the remaining individual [20]. Considering
the situation where the utility of a single individual improves en-
sures that an evaluation respects each person’s wellbeing. That
is, a population-level evaluation that does not satisfy this prop-
erty would sometimes ignore the utility of an individual, even in
situations where that of others is not impacted. From the perspec-
tive of information access, the Pareto property means that, the
performance of all other queries or users being equal, if a system
improves the performance for a single query or user, then it should
be preferred. The Pareto property is formally defined as,

Vx € Xou(x, f) 2 p(x, f') A3x € Xop(x, ) > p(x f') = f > f

)
For example, while the arithmetic mean of {u}x s would satisfy
the Pareto property, the median would not, since improving, say,
min{y}x ¢ up to the median would not affect the median (or the
ordering of systems). While simple, theoretical consistency with the
Pareto principle ensures that, no matter the condition, we respect
the strict benefit to individuals.

3.2 Average Utilitarianism

While the Pareto property considers a single individual in isola-
tion, we might alternatively consider the expected utility over all
individuals. Average utilitarianism prefers the allocation where the
expected utility is higher and is well-aligned with empirical risk
minimization, the foundation of many machine learning methods.
In the context of a commercial information access system, when the
measurements are correlated with revenue (or inversely correlated
with cost), then average utilitarian is often aligned with cumulative
revenue. That said, average utilitarian decision-making focuses on
the performance for a random user. In this sense, as a result, if the
population is structured so that some inputs or groups of inputs are
over-represented, they can dominate the decision-making. Average
utilitarianism is formally defined as,

D M) > e D) = > S
xeX

xeX

@

117

SIGIR-AP ’24, December 9-12, 2024, Tokyo, Japan

Since we compare systems over the same population, we can drop
the multiplicative factors and recover the utilitarian condition, de-
fined as the cumulative utility over the population,

Donef)> Y uxf) = f > f

xeX xeX

®)

Therefore, we see that average performance has embedded value of
utilitarianism [22, 33]. Average utilitarianism is an implicit value
present in almost every information access experiment but is justi-
fied from a very specific philosophical tradition.

3.3 Difference Principle

While the Pareto property focuses on the difference in utility of
an individual when the utility of all other individuals is constant,
we often care about the fairness of utility distributed across the
population. In particular, Rawls argues that, when an individual
does not know which utility in an allocation they will receive, they
will rationally decide to prefer the allocation where their worst
outcome (i.e., receiving the least utility) is better [31]. This is re-
ferred to as the difference principle and underlies many approaches
to social justice, including many adopted in the machine learning
community [17, 19, 26, 35]. Worst case analysis more generally
is useful when evaluating the safety of a system and can provide
insight when systems are otherwise difficult to distinguish due to
ceiling effects [30].

The difference principle is particularly well-suited for informa-
tion access evaluation. In the professional librarian community,
codes of ethics often include principles of equal access, which are
non-utilitarian in nature [21]. Britz [5], based on Rawlsian theo-
ries of social justice, advocates for measuring the performance of
information access based on those least well-served. In a recom-
mendation context, Singh et al. [34] study worst-case evaluation
and optimization to design safe reinforcement learning methods.

The difference principle is formally defined using maximin,

min(p(x, ) > min(p(x, f')) = f > f’ 4)

xeX xeX
Unfortunately, because only the minimum value is used, maximin
does not satisfy the Pareto principle. Moreoever, the practical prob-
lem with this approach is that most systems will have a minimum
value of zero, either because systems all fail in different ways or
because of outlier contexts that no system can perform well with.
Indeed, 83% of runs submitted to the TREC 2021 Deep Learning
Passage Ranking task were tied when evaluated using the worst
case NDCG at 10. In order to address these issues with maximin,
Sen [32] introduced the lexicographic minimum or leximin. Let ji
be the measurements {yi}x r sorted in decreasing order; similarly
H’ for {u}x - The leximin preference is defined as,

©)

where i* is the maximum index where ji; # [i}. Leximin is frequently
adopted in the machine learning literature in lieu of maximin [1, 10].
Note that, because it focuses on the single worst utility, the differ-
ence principle is not statistical by definition. We contrast this with
average utilitarianism, where, because it focuses on the expected
individual, methods of statistical inference can be leveraged.

i > i — f > f
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3.4 Compatibility between properties

Although these properties are all desirable for different reasons,
they are compatible to different degrees. It is easy to confirm that
(average) utilitarianism satisfies the Pareto property; all other util-
ities being equal, increasing the utility to one individual will in-
crease both the total and average utility. On the other hand, by
focusing only on the worst case, maximin is indifferent between
allocations that would be distinguished by the Pareto principle;
if {p}x,r = [1,0.9,0.1] and {u}x s = [1,0.8,0.1], then the Pareto
property would require that f > f’ but maximin would be in-
different. Adopting leximin satisfies both the difference princi-
ple and the Pareto property. Finally, utilitarianism and the dif-
ference principle are incompatible; if {u}x s = [1,0.0,0.0] and
{u}x = [0.3,0.3,0.3], then average utilitarianism would observe
f > f’ butsatisfying the difference principles would observe f < f”

The relationship between these properties clarifies what is val-
ued when we adopt either average utilitarianism or the difference
principle. If we adopt average utilitarianism, we cannot provide
guarantees about satisfying Rawlsian fairness; if we adopt the dif-
ference principle, we cannot provide guarantees about improving
average utility. This is important to ensure that evaluation decisions
align with normative values and organizational principles. In cases
where the information access provider is maximizing engagement,
utilitarianism may be more appropriate than the difference princi-
ple. In cases where the information access provider seeks to provide
equal access, the worst case performance may be more important
to consider.

In order to compare the empirical ordering by average utilitari-
anism and by the difference principle, in Figure 1, we show the rank
position of systems evaluated from the arithmetic mean perfor-
mance to leximin ordering for several datasets. Among a number of
small adjustments in rank position, several runs degrade from high
positions to very low positions (e.g., 6 — 36,12 — 32,16 — 44) and
from low positions to very high positions (e.g., 25 — 11,31 — 9).In
general, these results indicate that leximin indeed empirically cap-
tures a different phenomenon than arithmetic mean performance.

4 Pessimistic Evaluation

We wish to study population-level evaluation methods consistent
with the difference principle, maximin and leximin. That said, given
the importance of evaluation in information access problems, sev-
eral methods exist for measuring the worst-performing queries,
often in the context of robustness. In this section, we review these
methods.? We assume a fixed query sample X for evaluating sys-
tems, consistent with current offline testing practice and, for clarity,
write {4} = {u}x r and similarly {u}’ = {u}x p-

Geometric mean. Voorhees [38] uses geometric mean utility to

emphasize low measured utility. This is formally defined as an
aggregation,

gave({ph) =| [ ] max(ep ©)

pe{p}

2We omit the plethora of fair ranking metrics because they focus on fair exposure of
providers rather than utility to users.
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where € is a small value avoids degenerate effects when y = 0.3

Area under the lower quartile. Voorhees [38] also uses the area
under the curve defined by the lowest quartile of queries. This is
defined as an aggregation,

J

k 1
§ -.E fn—is1
=173

J= L

aucy({u}) = @)

==

where k = |n/4].

Success at Ten. Voorhees [38] also uses the fraction of queries
that have at least one relevant item in the top ten items and is
defined as an aggregation,

S@I0({) =+ > 1> 0)

pe{p}

®)

where p is precision at ten.

Risk-Penalized Gain. Wang et al. [42] uses methods from finan-
cial risk modeling to emphasize lower-performing queries. This
method compares a baseline allocation to a treatment allocation,
measuring average degradation in paired difference in performance.
Given two systems f and f’, we define the gain of f over f” as an
ordering function,

(b o) = 5 > max (0.u(x, ) = p(x. 1)
xeX
1+a

- —— ), max (0, p(x, f7) = u(x, f))

xeX

©)
where a > 0 and we recover ordering by the arithmetic mean
when a = 0. From a preference perspective, the gain is asym-
metric, meaning that T({u}, {u},a) # -T({u}, {¢}, a). To ad-
dress this, we combine the two directions as T({u}, {u},a) =

T({ph Ay, @) = T({u} {p}, @).

Gini Coefficient. The Gini coefficient is a measure of the average
difference between all pairs of utilities in an allocation. Although
not used for population-level evaluation in the ranking literature,*
the Gini coefficient is often used in the economics literature to
quantify inequity in distribution of utility and is defined as an

aggregation,
=l
{1}

where m is the arithmetic mean of {y}. The Gini coefficient is
bounded between 0 and 1, with 0 reflecting maximum equality and
1 reflecting maximum inequality. Note that the Gini coefficient only
measures inequality and does not capture utility of an allocation.

gni(h =55 >

' e{p}

(10)

5 Theoretical Analysis

Understanding whether a particular population-level evaluation
method is consistent with a property in Section 3 is important
for several reasons. First, because information access systems are
increasingly subject to regulation, grounding evaluation in clear

3Voorhees [38] sets this value to 0.00001, which we adopt in our experiments.
“4The Gini coefficient has been used to measure the inequality of retrieval of items in
both search [3] and recommendation [12, 25].
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Figure 1: Ranking of runs in three TREC tracks (see Table 4) according to associated metrics when ordering systems by average
performance (horizontal) and leximin (vertical). o: change in position less than one quintile. o: change in position between one
and two quintiles. o: change in position greater than two quintiles. Red: degradation in ranking. Blue: improvement in rank

position. Black: no change in rank position.

conceptual terms provides transparency and theoretical guaran-
tees about the alignment with philosophical and legal principles
(e.g., fairness) [9]. The value of transparency and these theoretical
guarantees extends beyond external regulatory agencies to inter-
nal stakeholders, including engineering and policy teams within
organization [8]. Second, theoretically characterization extends ax-
iomatic analysis of individual-level evaluation to population-level
evaluation [2, 6, 29].

As noted in Section 3.4, although both maximin and leximin sat-
isfy the difference principle by construction, only leximin satisfies
the Pareto principle. In this section, we will examine whether the
methods in Section 4 are consistent with the properties in Section
3.

Geometric mean. The geometric mean is equivalent to applying
a logarithmic transformation to measurements before computing
the arithmetic mean. Because the logarithm is monotonically in-
creasing in utility, if {u} and {u}’ only differ in a single individual
who has higher utility in {g}’, then the arithmetic mean of the
logarithms will be greater for {y}’. Next, although equivalent to
the arithmetic mean of the logarithms, this does not ensure that the
geometric mean is consistent with average utilitarianism. Consider
{u} =[1,0.9,0.1] and {p}’ = [0.5,0.5,0.5] where the geometric
mean prefers {u}’ while the arithmetic mean prefers {u}. Moreover,
despite emphasizing lower performance, the geometric mean is not
consistent with the difference principle. If {u} = [0.25,0.25, 0.25]
and {u}’ = [1,0.9,0.1], the geometric mean prefers {u}’ while the
difference principle would select {y}.

Area under the lower quartile. Because the area under the lower
quartile only considers a subset of utility values, any change in
utility occurs above the lower quartile is ignored. This means that
it does not satisfy the Pareto property. This also means that it is
not consistent with average utilitarianism. Finally, because the area
under the curve accumulates averages within the bottom quartile,
situations can arise which are inconsistent with the difference prin-
ciple. For example, consider {y} = [1,0.9,0.7,0.6,0.4,0.3,0.1,0.05]
and {p}’ = [1,0.9,0.7,0.6,0.4,0.3,0.3,0.0], where the area under
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the lower quartile prefers {u:}” while the difference principle would
select {u}.

Success at Ten. While perhaps correlated with many ranking
measures, success at ten does not provide any guarantee about
utility when considering other measures that inspect beyond the
tenth position. If utility is defined by query-level success at ten, then
the population-level success at ten reduces to the arithmetic mean,
satisfying the Pareto property and, trivially, average utilitarianism.
Because query-level success at ten is binary, if population-level
success at ten detects a difference between two systems, it will be
equivalent to the preference detected by leximin, satisfying the
difference principle. That said, for other metrics, population-level
success at ten provides no guarantees.

Risk-Penalized Gain. The symmetric version of gain, T, reduces to
the difference in arithmetic mean performance with a multiplicative
factor of 2 + a, indicating that it satisfies the Pareto property and
average utilitarianism but not the difference principle.

Gini Coefficient. Because the Gini coefficient focuses on mea-
suring equality, it prefers allocations that are more uniform, re-
sulting in inconsistency with the Pareto property. For example, if
{p} = [0.6,0.5,0.5] and {p}’ = [0.5,0.5,0.5], the Gini coefficient
would prefer {u}’ while the Pareto property would lead to {u}
being preferred. The same example can be used to demonstrate
that the Gini coefficient is not consistent with average utilitari-
anism. We can see that Gini coefficient is also inconsistent with
the difference principle by considering {u} = [0.8,0.6,0.5,0.3] and
{p}’ =[0.5,0.3,0.3,0.2], where the Gini coefficient would prefer
{p}’ while the difference principle would prefer {y}.

Summary. We summarize results in Table 1. These analyses all
compromise the content validity of these population-level evalua-
tion methods from the perspective of the properties discussed in
Section 3. This does not suggest that the methods are not useful
in evaluating systems, but that they are inconsistent with various
properties important to designing information access systems. In
Section 6, we will move from theoretical analyses to study the
empirical behavior of these methods.
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Table 1: Summary of population-level evaluation properties:
Pareto property (PP), average utilitarianism (AU), difference
principle (DP) for minimum (min), leximin (Imin), arithmetic
mean (avg), geometric mean (gavg), success at ten (s@10), area
under the lower quartile (aucy), risk-penalized gain (gain).

AU DP

min
Imin
avg
gavg
s@10
aucy
gain
gini

> N %X NN N X[
> N X X X N X X
™% X X X X NN

6 Empirical Analysis

Having examined the properties of several population-level evalua-
tion methods, we now turn to studying the empirical relationship
between these methods and leximin. Our objective in this section
is to measure the convergent validity, discriminant validity, and
sensitivity of leximin. In order to measure convergent validity, we
compute Kendall’s 7 between the ranking of systems ordered by
leximin and the ranking of systems ordered by other pessimistic
evaluation methods (i.e., those in Section 4). We adopt 73 to handle
ties [23]. In order to measure discriminant validity, we compute
Kendall’s 7 between the ranking of systems ordered by leximin and
the ranking of systems ordered by other methods not focused on
pessimistic evaluation. In this case, we consider the arithmetic mean
and leximax, which is analogous to leximin but starts at the best-
case utility. In order to measure sensitivity, we count the number
of tied systems under each population-level evaluation method.

6.1 Data

We analyzed population-level evaluation across a wide range of
information access tasks where using the difference principle is
well-motivated (Section 3). For information retrieval contexts, we
used official runs submitted to 24 different TREC tracks. For rec-
ommendation contexts, we used publicly available runs for three
recommendation tasks: movielens, beerAdvocate, and libraryThing
[37]. Dataset details are available in Appendix A.

We focused analysis on comparing the following population-
level methods: minimum, leximin, arithmetic mean, geometric
mean, success at ten, and lowest quartile area under the curve.
We omit symmetric risk-penalized gain because it is equivalent to
the arithmetic mean and the Gini coefficient because it does not
capture total utility.

6.2 Results

Results for corpora using average precision as the utility measure
are presented in Table 2. Results for other metrics on the robust
(2004) corpus are presented in Table 3.

When measuring convergent validity, we are interested in higher
correlation with population-level methods intended to capture the
same higher level concept. In Table 2, when comparing leximin
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to minimum, geometric mean, success at ten, and lowest quartile
area under the curve, we observe 7 values in general ranging from
0.50 to 0.90, suggesting high empirical agreement. Cases where
correlations are weaker occur when the population-level evalu-
ation method incurs substantial ties (e.g., web (2009), deep-docs
(2020), legal (2007)). Although leximin and minimum both capture
the difference principle, we observe a correlation lower than 1 be-
cause leximin computes preferences even when we observe a tie
in minimum utilities. The next highest correlation after minimum
is with the geometric mean, which is the only other pessimistic
evaluation method that satisfies the Pareto property. This means
that, unlike success at ten and lowest quartile area under the curve,
like leximin, it considers the full set of queries.

When measuring discriminant validity, we are interested in lower
correlation with population-level methods intended to capture the
different higher level concepts, in our case average utilitarianism
and best-case utility. When comparing leximin to arithmetic mean,
we observe 7 values in general in the range from 0.20 to 0.60, suggest-
ing low to moderate correlation. Comparing the 7 across methods
for a single condition (i.e., row), we see that the correlation with
the arithmetic mean is lower than the correlations with pessimistic
methods. Moreover, the correlation is consistently weakest with
leximax, which captures the best-case performance and should be
low.

Table 3 demonstrates that our observations about convergent
and discriminant validity are consistent across other metrics. We
noticed that, especially for metrics with rank cutoffs (e.g., ndeg@10,
p@10), the success at ten method correlated much higher with
leximin.

Finally, when inspecting the number of ties for each method,
leximin always is tied for the lowest value and is comparable to
other methods with high sensitivity. This is especially salient when
comparing leximin with minimum, the only other method consis-
tent with the difference principle, which consistently demonstrates
tied performance. As such, if we are interested in satisfying the
difference principle and conducting experiments, leximin should
be preferred to minimum.

7 Discussion

We were motivated to rigorously define and understand pessimistic
evaluation from basic concepts grounded in normative principles of
fairness and information access. Our theoretical results demonstrate
that leximin is the only population-level evaluation in our suite that
satisfies the fundamental Pareto property and difference principle.
Our empirical results demonstrate the convergent and discriminant
validity of leximin while also having high sensitivity.

We based our adoption of the difference principle on work from
information science advocating for Rawlsian fairness in information
access [5, 21] and separate work in the machine learning community
[17, 19, 26, 35]. As such, providing formal guarantees of population-
level methods aligning with it is important, especially in responsible
artificial intelligence contexts where stakeholders from multiple
disciplines need to align [8].
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Table 2: Kendall’s 7 for various datasets using average precision as the utility metric. Comparison between system ranking
based on leximin (Imin) and minimum score (min), geometric mean (gavg), success at ten (s@10), area under the lower quartile
(aucy), arithmetic mean (avg), and leximax (Imax). Number of ties in parentheses. Dashes reflect situations where all systems
are tied according to the method. Bold: highest 7 in convergent validity analysis. Italics: lowest correlation in discriminant

validity analysis.

pessimistic evaluation

nruns Imin min gavg s@10 aucy avg Imax
robust (2004) 110 | 1.000 (2) | 0.882(54)  0.665 (2) 0.566 (95)  0.682 (2) | 0.474 (2) 0.193 (2)
core (2017) 75 | 1.000 (6) | 0.998 (16)  0.557 (6) 0481 (73) 0592 (6) | 0.433 (6) 0.331 (6)
core (2018) 72| 1.000 (2) | 0.987 (16)  0.629 (2) 0.603 (67)  0.664 (9) | 0512 (2) 0.450 (2)
web (2009) 48 | 1.000 (0) | 0.287 (46)  0.761 (0) 0.666 (32)  0.785 (5) | 0.475 (0) 0.043 (0)
web (2010) 32| 1.000 (2) | 0.970(12)  0.556 (2) 0523 (28)  0.661 (2) | 0.244 (2) 0.071 (2)
web (2011) 61 | 1.000 (8) | 0.863(39)  0.733 (8) 0.372 (57)  0.671 (8) | 0.640 (8) 0.444 (8)
web (2012) 48 | 1.000 (4) | 0.957 (22)  0.586 (4) 0321 (42)  0.648 (4) | 0.401 (4) 0.302 (4)
web (2013) 61 | 1.000 (8) | 0.974(30)  0.564 (8) 0506 (57)  0.708 (8) | 0.370 (8) 0.151 (8)
web (2014) 30 | 1.000 (4) | 0.992(10)  0.473 (4) 0.508 (26)  0.621 (4) | 0.386 (4) 0.095 (4)
deep-docs (2019) 38 | 1.000 (0) | 0.967 (10)  0.366 (0) 0527 (36)  0.616 (0) | 0.260 (0)  -0.084 (0)
deep-docs (2020) 64 | 1.000 (0) | 0.539 (54)  0.619 (0) 0545 (62)  0.563 (0) | 0.408 (0) 0.277 (0)
deep-docs (2021) 66 | 1.000 (6) | 0.975(21) 0520 (6) 0.641 (65)  0.604 (6) | 0.210 (6)  -0.041 (6)
deep-docs (2022) 42 | 1.000 (0) | 0.883(20)  0.847 (0) 0.697 (37)  0.844 (0) | 0.784 (0) 0.526 (0)
deep-docs (2023) 5 | 1.000 (0) | 0.949 (2) 0.600 (0) 0.527 (2) 0.600 (0) | 0.600 (0) 0.400 (0)
deep-pass (2019) 37 | 1.000 (0) | 0.549 (31)  0.628 (0) 0563 (35)  0.532 (0) | 0.580 (0) 0.517 (0)
deep-pass (2020) 59 | 1.000 (0) | 0.808 (35)  0.615 (0) 0523 (49)  0.617 (3) | 0.501 (0) 0.416 (0)
deep-pass (2021) 63 | 1.000 (0) | 0.589 (51)  0.704 (0) 0519 (57)  0.642 (2) | 0.520 (0) 0.051 (0)
deep-pass (2022) 100 | 1.000 (0) | 0.793 (66)  0.731 (0) 0.632 (92) 0722 (0) | 0.649 (0) 0.457 (0)
deep-pass (2023) 35 | 1.000 (0) | 0.824(22)  0.771 (0) 0755 (27) 0768 (0) | 0.681 (0) 0.382 (0)
legal (2006) 34 | 1.000 (0) - (34 0.722 (0) 0433 (25) 0712 (6) | 0.490 (0) 0.005 (0)
legal (2007) 68 | 1.000 (0) | 0.943(25) 0514 (0) 0.323 (60)  0.433 (3) | 0.430 (0) 0.347 (0)
podcasts (2020) 14 | 1.000 (0) | 0.711 (10)  0.912 (0) 0.769 (7) 0.739 (4) | 0.868 (0) 0.560 (0)
podcasts (2021) 27 | 1.000 (11) | 0.649 (21) 0725 (11) 0770 (21)  0.704 (12) | 0.642 (11)  0.487 (11)
tot (2023) 30 | 1.000 (2) - (30) 0714 (2) 0.414 (8) 0.503 (26) | 0.341 (2) 0.304 (2)
movielens 21 | 1.000 (0) - (21) 0752 (0) 0.790 (0) 0.802 (4) | 0.676 (0) 0.600 (0)
beerAdvocate 21 | 1.000 (0) - (21)  0.857 (0) 0.781 (0) - (21 | 0771 (0) 0.705 (0)
libraryThing 21 | 1.000 (0) - (21)  0.952 (0) 0.933 (0) 0.900 (8) | 0.914 (0) 0.838 (0)

Table 3: Kendall’s 7 for robust (2004) using R-Precision (rp), average precision (ap), normalized discounted cumulative gain
(ndcg), precision (p), and reciprocal rank (rr). Formatting identical to Table 2.

pessimistic evaluation

Imin min gavg s@10 avg Imax
p 1.000 (2) - (110) 0.840 (2) 0.778 (95) 0.848 (4) | 0.516(2) 0.192 (2)
ap 1.000 (2) | 0.882 (54) 0.665 (2) 0566 (95)  0.682 (2) | 0.474(2)  0.193(2)
ndcg 1.000 (2) | 0.882 (58) 0.687 (2) 0.526 (95) 0.723 (2) | 0.524(2) 0.178 (2)
ndcg@100 | 1.000 (2) | 0.352 (103) 0.802 (2) 0.688 (95) 0.787 (2) | 0.494 (2) 0.233(2)
p@100 1.000 (2) | 0347 (110)  0.788 (2)  0.688 (95)  0.853 (4) | 0.471(2)  0.005 (2)
ndeg@10 | 1.000 (2) - (110) 0890 (2)  0.987(95)  0.908 (4) | 0.530(2)  0.141(2)
p@10 1.000 (2) - (110) 0.909 (2) 0.987 (95) 0.962 (41) | 0.526 (2) 0.174 (2)
T 1.000 (2) | 0.882 (64) 0.703 (2) 0.589 (95) 0.660 (2) | 0.527(2) 0.472 (2)
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Although we have grounded pessimistic evaluation in arguments
from information science, alternative positions may demand alterna-
tive population-level evaluation methods. Just as average utilitarian-
ism can be justified for commercial organizations, other properties
can be justified by other contexts. For example, in some commer-
cial situations, there is a privileged group of subscribed customers
that deserves substantially more attention during population-level
evaluation to ensure retention [43]. Or, alternative notions of jus-
tice may require entirely new population-level fairness evaluation
formalisms [16].

As discussed in Section 3.3, leximin is not statistical by definition
since it emphasizes the absolute worst case instead of the expected
case. This does not imply that there is not uncertainty in estimating
worst-case performance differences since it can arise from query
sampling, randomness in system decisions, in addition to other
sources.

One way to introduce uncertainty is to define a relaxed version
of leximin. For example, we can use a moving average to smooth
measurements. For a lag of k, we compare Z?;Ol Hiyj and Z];;Ol i, ;
instead of ji; and i}. This means i iterates from n — (k — 1) to 1,
recovering the arithmetic mean when k = n. In Figure 2, we demon-
strate how adjusting k generates rankings of systems smoothly
transitioning between the difference principle (low values of k) and
average utilitarianism (high values of k). This behavior is similar
to lower quartile area under the curve except that, like the leximin,
it backs off to higher quantiles in the presence of a tie. Smoothed
leximin satisfies the Pareto property because, if {i} and {u}’ only
differ in a single individual who has higher utility in {y}’, then
each Z?z_ol Hiyj < Z?z_ol Jii, ; and at least one inequality is strict.
Moreoever, it is easy to see that, unless k = n, smoothed leximin
evaluation can be inconsistent with the average utilitarian decision.
As an example, consider {u} = [1,0.0,0.0] and {u}’ = [0.2,0.2,0.2]
where, unless k = n, smoothed leximin prefers {¢}’. Similarly, un-
less k = 1, smoothed leximin evaluation can be inconsistent with the
difference principle. As an example, consider {y} = [0.1,0.1,0.1]
and {u}’ = [0.25,0.25,0.0] where, unless k = 1, smoothed leximin
prefers {u}’. We believe smoothed leximin provides one way to
begin to explore statistical methods for pessimistic evaluation.

While leximin provides a lens into worst-case performance, there
are situations when aggregation-based methods are more appropri-
ate. For example, we may be interested in a single score assigned
to each system for a downstream process or decision. Aggregation-
based methods may also obviate the need for leximin in some metric
conditions. For example, leximin becomes increasingly similar to
the arithmetic mean as the number of discrete utility values de-
creases. When there are two values—as with success at ten—leximin
and the arithmetic mean are equivalent. To see how discretization of
utility values affects the relationship between leximin and the arith-
metic mean, we conducted the following experiment. Under the
first discretization method, we progressively set all utility valued
below a threshold to 0. Under the second discretization method, we
removed significant digits from the utility value. Figure 3 shows the
Kendall’s 7 between the leximin ordering and the arithmetic mean
ordering as we discretized average precision values. Under both
discretization methods, we observe a gradual convergence with the
arithmetic mean. This suggests that, even if we are interested in
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Figure 2: Kendall’s 7 between system orderings by smoothed
leximin and arithmetic mean (solid) and leximin (dashed)
using average precision on Robust 2004 (see Section 6.1 for
details).
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Figure 3: Discretization of average precision values for Ro-
bust 2004. (a) Metric values below the threshold set to zero. (b)
Metric values quantized to a specific number of significant
digits.

the difference principle, there are situations where the arithmetic
mean is equivalent.

At a higher level, we hope that a rigorous conceptual and theoret-
ical grounding of population-level evaluation provides a template
for others interested in developing new methods. In particular,
because population-level evaluation often explicitly or implicitly
captures social values, understanding those foundations when ana-
lyzing existing or designing new methods is important for policy,
legal, and ethical integrity.

8 Conclusion

While the information retrieval community has a rich history of
individual-level evaluation research focused around metric design,
substantially less work exists studying population-level evaluation,
even though it is fundamental to all retrieval experiments. As an ex-
ample of the importance of analysis of population-level evaluation,
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Table 4: Datasets used in empirical analysis. Runs submitted
to the associated TREC track or recommendation task.

requests runs rel/request docs/request

robust (2004) 249 110 69.93 913.82
core (2017) 50 75 180.04 8853.11
core (2018) 50 72 78.96 7102.61
web (2009) 50 48 129.98 925.31
web (2010) 48 32 187.63 7013.21
web (2011) 50 61 167.56 8325.07
web (2012) 50 48 187.36 6719.53
web (2013) 50 61 182.42 7174.38
web (2014) 50 30 212.58 6313.98
deep-docs (2019) 43 38 153.42 623.77
deep-docs (2020) 45 64 39.27 99.55
deep-docs (2021) 57 66 189.63 98.83
deep-docs (2022) 76 42 1245.62 100
deep-docs (2023) 82 5 75.10 100
deep-pass (2019) 43 37 95.40 892.51
deep-pass (2020) 54 59 66.78 978.01
deep-pass (2021) 53 63 191.96 99.95
deep-pass (2022) 76 100 1315.22 100
deep-pass (2023) 82 35 103.18 100
legal (2006) 39 34 110.85 4835.07
legal (2007) 43 68 101.02 22240.30
podcasts (2020) 48 14 43.67 963.40
podcasts (2021) 50 27 30.80 781.15
tot (2023) 150 31 1 1000
movielens 6005 21 18.87 100.00
libraryThing 7227 21 13.15 100.00
beerAdvocate 17564 21 13.66 99.39

we introduced pessimistic evaluation through leximin, a method
firmly grounded in robust philosophical and moral traditions. We
contrast the guarantees provided by this theoretical foundation
with related methods from robustness measures in information
retrieval. We further demonstrated content, convergent, and dis-
criminant validity of leximin as well as a competitive sensitivity.
We advocate information retrieval experimenters—especially those
in organizers with values aligned with the difference principle—to
complement existing population-level methods with leximin.

A Data

All TREC runs and relevance judgments were downloaded from
NIST.> Recommendation runs and judgments were downloaded
from a public repository.® Datasets are detailed in Table 4. Metrics
were computed using the official trec_eval package.”
Shttps://trec.nist.gov/results.html

®https://github.com/dvalcarce/evalMetrics
"https://github.com/usnistgov/trec_eval
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