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1 Terabyte We take a Bayesian approach and impose a multiple-
1.1 Model Beta prior over the model 6. Thus, P(D|f) ~
The retrieval model implemented in the Indri search enginel{l ulti Bernoulli(6) and P(6|a, 5) ~ MultiBeta(a, (). Our

an enhanced version of the model described in [30], which-copg¢lief at node is then:

bines the Iangu.age modeling [35] and inferencq network [38](0 D _ P(D|6;)P(6i|ai, B:)
approaches to information retrieval. The resulting model £0iD,a.0) = = . 1o B,
. . Jo, P(D|0:)P(0i|cs, Bi)
lows structured queries similar to those used in INQUERY [4] ‘
to be evaluated using language modeling estimates witlgin th = Beta(#(ri, D) + @i, | D| = #(ri, D) + )

network, rather thatf.idf estimates. Figure 1.1 shows a graphigr eachi where#(r;, D) is the number of times feature is

ical model representation of the network. As in the origingkt to1 in documentD’s multiset of feature vectors.

inference network framework, documents are ranked acegrdi \ye estimate such a model for the entire document. Addition-

to P(I|D, a, 5), the belief the information neellis met given )1y, we estimate field specific models for a number of HTML

documentD and hyperparametersandj as evidence. fields. To do so, we treat all of the text in a document that ap-
Due to space limitations, a general understanding of the jisars within a given field as a pseudo-document. For example,

ference network framework is assumed. See [30] and [38]49nodel can be estimated for all of the text that appearsmithi

fill in any missing details. thehl tags of a document. More details of the specific fields

we explored are given in Subsection 1.4.
1.1.1 DoCUMENT REPRESENTATION

Typically, in the language modeling framework, a documenti 1.3 RepPRESENTATIONNODES

represented as a sequence of tokens (terms). Based on-thigi€;; nodes correspond to document features that can be rep-
quence, a multinomial language model over the vocabularydSented in an Indri structured query. Indri implementtya
estimated. However, it is often the case that we wish to moggdse operators available in INQUERY [4]. They are single
more interesting text phenomenon, such as phraseabsence terms, #N (ordered window), and #uwN (unordered window

of aterm, etc. Here, we represent documents as multisets ofys). see [30] for more details. The belief at a given representa
nary feature vectors. The features can be nearly any ititegestion node is computed as:

binary observation of the underlying text. The featuresiuse

represent documents in our model are discussed later. P(ri|D, o, 8) = / P(r;]6;)P(6;|D, i, ;)
We assume that there is a single feature vector for each po- 0;
sition within a document, although in general this need m®ot b = FEIb;]
the case. Such a model moves away from modeling text towards #(ri, D) + oy
modeling features of text. Throughout the remainder ofphais = m
per we refer to such models as language models, although they
really are better described Esguage feature models Furthermore, selecting; = pP(r;|C) and B; = p(l —
P(r;|C)) we get the multiple-Bernoullimodel equivalent of the
1.1.2 LANGUAGE MODELS multinomial model’s Dirichlet smoothing [42] estimate:
Since our event space is now binary we can no longer estimate
a single multinomial language model for each document. In- P(r;|D, a, B) #(ri, D) + pP(ri|C)
stead, we estimate a multiple-Bernoulli model for each docu D] +

ment, as in Model B of [31] This overcomes the theOl‘etiC@hereM acts as a tunable Smoothing parameter.
issues encountered in [30]. Note that the multiple-Bernoul

model imposes the assumption that the featurgs)@re inde- 1.1.4 QERY NODES
pendent, which of course may be a poor assumption dependihg query node operators are soft probabilistic operataits.
on the feature set. of the query operators available in INQUERY are also avéglab



in Indri, with the addition of a weighted version of the #andCPU

operator named #wand. The operators are #combine (sameBiss speed

#and), #weight (same as #wand), #or, #not, #sum, #wsum, a5

#max. See [30] for the details of how beliefs are computed d¥lemory

the query nodes. Boot volume
Since we are using language modeling probabilities within

the network, the #wsum operator no longer makes sense and #@rk volume

the #combine (#and) and #weight (#wand) operators are more

appropriate [30]. In fact, it can be shown that the Indri gquer

#combine(y; . . . ¢ ) using the estimates just described returns

exactly the same ranked list as the query.. gy using the
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Figure 2: Machine configuration for Terabyte task (6 of these
faachines were used) at a total cost of $9000 USD.

1.2 Test Platform
We ran our index builds and our queries in parallel on a ctus
of 6 identically configured machines (the machine configura-

tion is shown in Figure 2). improved our indexing times.

Fpr the run |_nv0IV|ng anchor text, we ran an application on The Indri indexing process creates a variety of data struc-
a single machine that extracted all anchor text from the CPL!I—

) X ST T ) _“tures:
lection. We discarded all in-site links, that is, all maasn

that pointed to pages on the same machine as they originated A compressed inverted file for the corpus, including term
from. The remaining link text was associated with the desti- position information

nation page of each link. This process took more time than, compressed inverted extent lists for each field indexed in
indexing did, and it generated approximately 7GB of anchor  the corpus

text. e A vector representation of each document, including term
) ) ) position information and field position information
1.3 Indri Retrieval Engine ¢ Arandom-access compressed version of the corpus text

We indexed the GOV2 collection using Indri, a new language
modeling retrieval engine developed at UMass based on th&Ve found that flushing the vocabulary during posting flushes
Lemur project. The Indri engine was written to handle quesamplicated the creation of document vectors. These \v&ctor
tion answering and web retrieval tasks against large carpaire compressed arrays of numbers, where each number corre-
The engine is written in C++ and runs on Linux, Windows, Sgponds to some term in the collection. In initial developmen
laris and Mac OS X. We used the Terabyte task as a provissgeh term was assigned a fixed number when it was first seen in
ground for this engine. the corpus. With vocabulary flushing, we were no longer able
The indexing algorithm is quite similar to the one described keep fixed term numbers throughout the indexing process.
in [14], although it was developed before we had seen this pde therefore write the document vectors out using temporary
per. In the early phases of development we had attemptedeton numbers. Once each term is assigned a final term number
store the vocabulary of the collection in a B-Tree data $tmec  during the final inverted list merge, we rewrite the document
With caching, this method seemed to do well on collectionswéctors, exchanging the temporary term numbers for the final
up to 10GB, but after that point performance degraded diamatumbers.
cally. We eventually changed the system to flush the vocapula
during posting flushes, as in [14]. This technique drambyical.3.1 ANCHORTEXT
For the anchor text run, we followed the model presented by
Ogilvie and Callan in [34]. In this model, different porti®n
of the document are considered to be different representati
of the same document. We used the heading fidldist{2, h3
andh4), thetitle  , the whole text, and the anchor text of each
web page as these different representations. The Indriyquer
language enabled us to weight these different represensati
during retrieval.
Let the set of pages in the corpus @e For each document
d € C, there is a (possibly empty) set of documentginhat
have links tod. Let this set of documents ble. We can par-
tition L into two sets,L; and L, whereL; consists of those
documents on the same serverdagand L i consists of those
documents on other servers. L4&td) represent the text in links
from L to d. We useA(d) as the anchor text model far

Figure 1: Indri’s inference network retrieval model.



In order to be able to use the anchor text model of a documerniiVe have also implementétiveight operator folding. This
during retrieval, we created an anchor text harvestingnamg optimization removes unnecessanyeight and#combine
This anchor text harvester wrote out all the links in theemwll operators.  For instance, a query such #aseight(
tion into a separate anchor text only corpus. The program tle5 #combine( Bruce Croft ) 0.5 #combine(
associated the anchor text for each link to the destinatimn dJames Allan ) ) is equivalent to#weight( 0.25
ument. Approximately 70% of the time for this process wduce 0.25 Croft 0.25 James 0.25 Allan ) .
taken in parsing the corpus to find the text; the remaining 3@46wever, our implementation of mascore operates only on
was taken in associating the link text with the destination-d the top level#weight operator. As suchfweight folding,
uments. in concert with maxscore, gave us a large speedup in the query

expansion runs.

1.3.2 RETRIEVAL
Indri uses a document-distributed retrieval model wherr-opé-4 Runs
ating on a cluster. Each machine in the cluster runs a proced¢ official runs were submitted for evaluation. We created
called a query server, which can perform queries againft-itsfuns that vary from very simple (indri04QL) to very complex
cal collection. A process called the query director senesiga (indri04FAW) with the aim of evaluating the efficiency and ef
out to the query servers for processing, and then merges-thdgctiveness of our system across a wide range of query types.
sults. order to emulate reality as close as possible, all queries awe

In order to generate scores on a cluster that are identicald@atically constructed using only the title field from togic.
those in a single collection, it is necessary for each cluside The runs submitted were:

to use the same corpus statistics for term frequency andisorp |, . . .
size. To do this, Indri starts every query by collectingistat IRd”OA'QL — Query likelihood. For each topic we create an

tics from the query servers. The query director combinesgthd " query of the fornwcombine (g, ...qy ), whereq =
., qn is the title portion of the topic.

statistics to create a collection model for the query. Tlistestis- -
tics are then sent back to the query servers with the quety it$nqrio4QLRM - Query likelinood + pseudo relevance feed-
for final processing. This two-phase process allows Indri fack. For each topic, we construct a relevance model [28j fro
handle statistics collection for phrases in the same wayithane top 10 documents retrieved using the indri04QL querg Th
handles collection for terms. original query is then augmented with the 15 terms with the
On each query server, Indri scores documents in a documehest likelihood from the relevance model. The final forin o
at-a-time manner. The literature suggests that this is e Indri query istweight (0.5 (#combine (¢ ...qn ) 0.5

the fastest way to perform retrieval, but we have found thB@ombine (e, ...ei5 ) ), wheree; .. .e15 are the expansion
document-at-a-time method to be more straightforward &l fi terms.

restricted query evaluation, and have therefore adopfedat|
queries. indri04AW — Phrase expansion. This run explores how we
The Indri engine does employ a variety of optimizations @&n exploit Indri's proximity operators to improve effet
query time. Some of them were in place before we submitte@iss. We base our technique on the following assumption de-
our TREC results, but some were implemented afterward. ®&fibed in [5]: query terms are likely to appear in close prox-
are including a second set of query times, run on the same héfiity to each other within relevant documents
ware as the first, to show improvements achieved with newefor example, given the query Gteen party
optimizations. political views " (topic 704), relevant documents
In the results we reported at the deadline, our system u¥élikely contain the phrase§reen partyandpolitical views
1MB buffers on all term inverted lists in order to keep disklse Within relatively close proximity to one another. Most rettal
overhead to an acceptable minimum. We processed all quefi@slels ignore proximity constraints and allow query terms
into directed acyclic graphs before evaluation, which drim to appear anywhere within a document, even if the words are
cally cut down on the time necessary to evaluate the more csigarly unrelated. Let us treat a query as a set of tefns
plicated adaptive window runs. We also incorporated a fat pand defineSy = P(Q) \ {0} (i.e. the set of all non-empty
for frequency-only terms; that is, terms that can be scoaseth Subsets ofQ). Then, our queries attempt to capture certain
on their frequency within the document, and without positidnnate dependencies between query terms via the following
information. For these frequency terms, we read postirga frassumptions oq:

the inverted list in batches, and did not decompress théiposi 1. Everys € So that consists of contiguous query terms is

|nfo-rmat|0n. . L likely to appear as an exact phrase in a relevant document
Since the deadline, we have added two more optimizations. (i.e. #1)

The first is maxscore, described in [39]. This optimization 2
was in place before the deadline, but because of bugs in the
implementation was not actually working. The msoore opti-
mization allows Indrito skip inverted list postings that kreow
cannot be associated with a document in thertggositions of ~ These assumptions state that (1) exact phrases that appear
the ranked list. Note that this optimization is rank and ecoin a query are likely to appear as exact phrases within rele-
safe. vant documents and that (2) all query terms are likely to appe

Everys € Sg suchthats| > 1is likely to appear (ordered
or unordered) within a reasonably sized window of text in
arelevant document (i.e. #u\g|).



within close (ordered or unordered) proximity to each oiher runid index | index | avg. | struct?
a relevant document. As a concrete example, given the query time | size | query
“Prostate cancer treatments " (topic 710) our sys- (mins)| (GB) | time
tem generates the following query: (s)
#weight( indrio4QL 355 | 224 1.36 | no
1.5 #combine( prostate cancer treatments ) indri04QLRM | 355 224 26.0 | no
0.1 #combine( #1( cancer treatments ) indri04AW 355 224 6.5 no
#1( prostate cancer ) _ -
#1( prostate cancer treatments ) ) indri04AWRM | 355 | 224 | 39.4 | no
0.3 #combine( #uw8( cancer treatments ) indrio4FAW | 1300 | 226 52.2 | yes

#uw8( prostate treatments )
#uw8( prostate cancer )

Table 1: Summary of runs.
#uwl2( prostate cancer treatments ) )

)
Queries constructed in this way boost the score of documents . ] ]
that adhere to our assumptions. Experiments on the WT10guding both the inverted file and compressed collecthn.

collection with queries of this form performed significaritiet- €rage query time is the average number of seconds required to
ter than traditional query likelihood queries. run a query (distributed across the cluster) and retrieveéo?0

uments. The last column denotes whether or not the run made
indri0c4AWRM — Phrase expansion + pseudo relevance fe@y use of any document structure, such as titles, headers, e
back. This run uses the query constructed from the indri04AW
run for pseudo relevance feedback. Here, 5 documents were
used to construct the relevance model and 10 expansion tedmsNovelty
were added to the query. For this run, we weighted the origi-1
nal query0.7 and the expansion ternfs3 to yield a query of

the form#weight (0.7 Qg 0.3#combine (e;...e10)), There are four tasks in this year’s novelty track and we parti
WhereQO’l‘ig is the Orlglnal query andl ...e1p are the expan_ pated |n a.” Of them For the 50 tOpICS |n the 2004 traCk, eéCh (0]

sion terms. them has 25 relevant documents, and zero or more non-relevan
documents. Task 1 was to identify all relevant and novel sen-
indri04AFAW — Phrase expansion + document structure. aihces, given the full set of documents for the 50 topicsk Zas
final run is a largely untested and purely experimental gttenwas to identify all novel sentences, given the full set ofvaht
to make use of anchor text and document structure. As dightences in all documents. Task 3 was to find the relevant and
cussed earlier, the Indri search engine can index fields and @ovel sentences in the remaining documents, given thearelev
evaluated complex queries containing certain field contgru and novel sentences in the first 5 documents only. Task 4 was to
Several past studies have found that anchor text and do¢urfigdl the novel sentences in the remaining documents, given al
structure yields inconsistent improvements in effectagmfor relevant sentences from all documents and the novel sesgtenc
ad hoc web retrieval [12, 13, 17]. The results were obtain@m the first 5 documents.
using the WT10g collection, which is roughly 2.5% the size of We compared the statistics of the 2004 track with both 2002
the GOV2 corpus. Therefore, we wish to explore whether theged 2003 tracks, and have found that the statistics of thé 200
results hold for this larger collection. track is closer to the 2003 track. The comparison of thesstati
The queries constructed for this run make use of main baghys of the 2003 and 2004 novelty track data is shown in 2.
text, anchor text, thétle  field, and header fieldh(, h2, Therefore we decided to train our system with the 2003 data
h3, h4). The queries constructed are of the fo#meight ( when no training from this year’s track was available forkras
0.15 Qintink 0.25 Qtitie 0.10 Qneading 0.50 Qmainbody ), 1 and Task 2, and used the training data from this year’s track
where eachQs;.iq iS a phrase expansion query evaluated uss it was available for Task 3 and task4. We have already de-
ing the respective field language model. For exam@lgiinx  veloped an answer-updating approach to novelty detectipn |
is the phrase expansion query evaluated using a languags m@flich gave better performance in terms precision at low re-
built from all of the anchor text associated with a page. call on both the 2002 and the 2003 novelty track data than the
All smoothing parameters, weights, and window sizes weseseline approaches reported in that work. However, wedcoul
tuned using the WT10g collection and TREC topics 451-550t use the answer-updating approach directly in the tasks o
which were used for ad hoc web retrieval at TREC-9 and 10 [1Bis year’s novelty track because the evaluation measecins
13]. novelty track was the F measure, which is the harmonic mean
Table 1.4 gives a detailed summary of the runs. Each refprecision and recall. Therefore, we used TFIDF techrsque
used an index built from the entire collection of 25,205,17%@th selective feedback for finding relevant sentences amd c
documents. Documents are stemmed with the Porter stemgigered the maximum similarity of a sentence to its previous
and stopped using a standard list of 420 common terms. In se@tences and new named entities to identify novel sergence
table, indexing time is the number of minutes required tddbuiThe detail descriptions about our approaches are elaltbirate
the index in parallel across the cluster. Therefore, thimlmer the following subsections. Only the main approach for each
is themaximuntime required by any single machine to indetask will be reported in this paper even though multiple rfians
its subcollection. Index size is the total size of the indexisk each topic were submitted to TREC from us.

Overview of Our Approaches for the Four Tasks



Feature Track 2003| Track 2004
Num. of Event Topics 28 25
Num. of Opinion Topics 22 25
Num. of Relevant Documents/Topic 25 25
Num. of Non-relevant Documents/Top|c 0 11.16
Avg. Num. Sentences/Topic 797.4 1048.8

Table 2: Statistics comparison of 2003 and 2004 track data

2.2 Relevant Sentence Retrieval 2.3 ldentifying Novel Sentences

Similarities of a sentence to its previous sentences anddhe

currence of new named entities in the sentence are two main
For relevant sentence retrieval, our system treated seedexs factors considered in our approach to identifying novel-sen
documents and used the words in the title fields of the toptesices. New named entities have been used successfully in ou
as queries. TFIDF techniques with pseudo feedback or selmgswer-updating approach in novelty detection [27].
tive pseudo feedback were used for finding relevant senéenceFor Task 1 and Task3, our system started with the list of sen-
for Task 1 and TFIDF techniques with relevance feedbacktences returned from the relevant sentences retrievathwiri-
selective relevance feedback were used for Task3. Sedectivoidably contains many non-relevant sentences in additio
pseudo feedback means pseudo feedback was performegetsvant sentences. For Task 2 and Task 4, our system started
some queries but not on other queries based on an automaitic the set of given relevant sentences only. In either case
analysis on query words across different topics. Basicallythe cosine similarity between a sentence and each its previo
query with more focused query words that rarely appear in rebntence was calculated. The maximum similarity of a sen-
evant documents related to other queries is likely to haveta lience to its previous sentences was used to eliminate redun-
ter performance without pseudo feedback. Selective re@/adant sentences. Sentences with a maximum similarity value
feedback means whether to performance relevance feedhacfreater than a preset threshold may be treated as reduedant s
a query was determined by the comparison between the perfemnces. The value of the same threshold for all topics wasdtun
mance with and without relevance feedback in the top five dagith the TREC 2003 track data when no training date from this
uments for this query because the judgment of the top five dgear’s was available. The value of the threshold for eaclttop
uments was given for Task 3. Short sentences, non-informativas trained with the training data when the judgment of the
sentences as well as non-normal sentences were removed itdf five documents was given for Task 3 and Task 4. In ad-
final results. Non-informative sentences are the sentethees dition to the maximum similarity between a sentence and its
have less than n non-stopwords, where the best value of n [g&vious sentences, new named entities were also condiidere
(which was learned from the 2003 data). Sentences that higlemtifying novel sentences. A person’s name or an organiza
less than m terms are short sentences, where the best valdi®ofin a sentence that did not appear in the previous seesenc
m is 7 from the 2003 data. Non-normal sentences refer to somay give new information about who was related to an event or
special formats for some purposes other than offering the @m opinion [27]. Therefore, a sentence with previously ense
formation about the story discussed in a news story. In athmed entities was treated as novel sentences. About 26 type
dition to short sentences, non-informative sentences aned nof named entities were considered in our system, which in-
normal sentences, sentences similar to given non-releeait cluded PERSON, LOCATION, ORGANIZATION, DATE and
tences were also removed for Task 3 when partial judgment WeSNEY, etc. BBN's IdentiFinder [2] and our approach [27]
available. Basically if the maximum similarity between asewere used for identifying named entities.
tence and given non-relevant sentences is greater tharsetpre The performance of identifying novel sentences for Task 1,
threshold (which was trained with the 2003 data), the sestermask 2, Task 3 and Task 4 on the 2004 novelty track data are
was treated as non-relevant sentence and thus removedteongiven in Table 5. The F-score on the starting set of sentences
result list. (as described above) for each task establishes a bottorfotine
performance of a novelty detection algorithm. The F-scores
were evaluated when we simply assumed all the sentences were

The performance of finding relevance sentences using ¢ : :
el (without any novelty detection). Any successful rigve
approaches on the 2003 and 2004 data for Task1 and Task d%ESctEon approagh shouI)(; beat the F)-sco?/e bottom-lirm‘t()i”n

given in Table 3 and Table 4 respectively. There are three COLL  Table 4 shows that the E-scores of our approaches have
clusions that can be drawn from the results. First, the Fesco

of the original full set of sentences show that how diffich élgnlflcant increases from the bottom lines for all the fasks.
task is on different data set. Itis clear to us that the tagindt

ing relevant sentences on the 2004 data is more difficult tr%n HARD

that on the 2003 data. Second, TFIDF techniques work weéMass explored four different sub-tasks in the course of BAR
for relevant sentences retrieval on both the 2003 and 20@4 (2004: fixed-length passage retrieval, variable-lengttsages
sets. Third, selective feedback gives better performamae tretrieval, metadata, and clarification form feedback.

applying feedback on all queries on the two data sets. In order to allow these tasks to be studied, we established



Approaches F-score (2003) F-score (2004)
0. The Original full set of sentences 0.5398 0.303

1. TFIDF models with pseudo feedback 0.6429 0.393 (CIIRT1R1)
2. TFIDF models with selective pseudo feedback 0.6593 0.395 (CIIRT1R2)

Table 3: Performance of finding relevant sentences in Task2003 and 2004 data

Approaches F-score(2003) F-score(2004)
0. The Original full set of sentences 0.5271 0.306

1. TFIDF models with relevance feedback 0.6229 0.405 (CIIRT3R2)
2. TFIDF models with selective relevance feedback 0.6554 0.406(ClIR31R1)

Table 4: Performance of finding relevant sentences in Task2003 and 2004 data

responsibilities for each sub-task. First, we generataafiel 3.1.3 QUERY REPRESENTATION

cation form and receive user feedback. Using the respdmse A query model refers to a probability distribution over wsrd
first clarification form module constructs a new, possiblydmorepresenting the user’s information need. In the simplasec
ified query representation. Depending on the retrieval elgm we have the maximum likelihood query model based on the the
the query representation is passed to either a passagevaétruser’s title and description fields. Here, the we would pssce
module or a document retrieval module. Both of these modutke text according to section 3.1.1 and then form a maximum
return a ranked list of items (passages or documents). Thidegdihood language model using remaining terms as evidenc
items are then re-ranked based upon the satisfaction of topi

metadata value. As a post-processing step, the ranked lis?-iL.4 FRETRIEVAL USING LANGUAGE MODELS

further altered by feedback elicited from the clarificatiorm. A description of retrieval using language models is beydred t
scope of this document. We refer readers to the several paper

31 Methods and Materials on the subject [§]. We u.sed a modified yersion of the Lemur
language modeling toolkit to perform retrieval [1].

3.1.1 (OLLECTION PROCESSING It has been shown that query likelihood and divergence rank-

We processed the HARD collection differently for retriesald ing using a maximum likelihood query model are equivalent

metadata classification. For both retrieval and classifinat [23]. Therefore, without loss of generality, we confine oar d

only text between theTITLE> and<TEXT>tags were han- scription to divergence-based retrieval. In this approae

dled. take a query modelP(w|Q@), and rank all documents in the

For retrieval, tokenization was based on non-alphanuméiilection according to the Kullback-Leibler divergencétw
characters. If a token was not in a list of Acrophile [24‘]9(“’@)*
acronyms, then it was down-cased. If a down-cased token was P(w|Q)
in the libbow stopword list [29], then it was ignored. The score(D,Q) = Y P(w|Q)log
X P(w|D)
Krovetz stemmer [21] packaged with Lemur [1] was used to w

stem all remaining down-cased words. The topics and relaj¢gle the document language mod®lw|D), may be esti-
te_>$t metadata where processed in the same manner with therﬁé*'ed using a number of different techniques [42]; smogthin
ditional processing step thattp://  URLs were automati- narameters used will be described whenever language model
cally stripped from the related text. retrieval is used.

For metadata classification, contiguous digits were replac In addition to the maximum likelihood query model pre-
by a token representing a number. The paragraph<Bg, sented insection 3.1.3, we also uselévance modef®r query
was retained as a token. Quotation marks, ™ and “” ", representation [25]. Relevance models are a form of massive
were converted to the double quote mark;.“ Contractions query expansion through blind feedback. Constructing a rel
were pulled off and became their own tokens (n't, ’s, 'd, 'if), " evance model entails first ranking the collection according
've, and ’re). All punctuation was treated as separate tekethe maximum likelihood query model. Some set of documents
All remaining text was down-cased and broken at whitespaatethe top of this ranking become evidence for the relevance

(1)

boundaries. model,P(w|R). If we call this setR, then the relevance model
is estimated according to,
3.1.2 TRAINING TOPICS P(Q|D
. N . : PwlR) = Y P(w|D) (@D) - @)
The LDC supplied training data consists of 21 topics. Foheac > per P(QID)

topic, the LDC judged the top 100 documents returned by their ber

search system. We augmented the training topics with addhRere the query likelihood scor&(Q|D), can be easily com-
tional judgments by obtaining in-house judgments on an gu#ted from the divergence measure [33]. The relevance model
ditional 100 documents for each topic. This expanded setreplaces the maximum likelihood query model in a second
judgments was used for parameter tuning. round of document ranking.



Approaches Starting set of sentencesldentify novel sentences
F-scoreTask 1 (Ch% 0.195 0.211(+8.2%)
F-scoreTask 2 (Ch% 0.577 0.610(+5.7%)
F-scoreTask 3 (Ch% 0.194 0.210(+8.2%)
F-scoreTask 4 (Ch% 0.541 0.577(+6.7%)

Table 5: Performance of identifying novel sentences fok3ds4

Ideally, we would include the entire collection in the &t  In order to provide a finer-grained weighting of query terms,
and, thereforeP(w|R) would have no terms with zero probwe incorporated the query models described in Section 3.1.3
ability. However, computational limitations force us td |&| into our features. These hybrid features are presentedile Ta
be fixed; that is, we only consider the tdpdocuments. Fur- 6. In all cases, retrieval was performed using the hybrid fea
thermore, we alstruncateandnormalizethe relevance modeltures. However, unless otherwise noted, all models weié bui
to include only thel terms with highest probability. The firstusing the regular features.
parameter)N, does not affect the estimation of the relevance The corpora, queries and relevance judgments for TREC 1
model since we are normalizing the query likelihoods. Tlad TREC 2 provided training data. All the documents marked
second parametefd, requires a little explanation. First, werelevantfor a query were used as positive training instainga
compute the relevance model as in Equation 2. Second, egeial number of negative instances were obtained by random
order the terms irP(w|R) in decreasing order of probability.sampling of the remaining documents. These training ingsn
Third, we select the tod/ terms from this ordering. Finally, are represented in terms of their transformed feature x&ato
we normalize these term weights. the kernel space. The support vector machine then learns the

A relevance model captures behavior of the returned dofiyperplane that separates the positive and negativertgpin
ments but throws away the original query. In order to maiftances with the highest margin. For our runs, we used arlinea
tain information in the original query model, we linearly- inkernel. Hence the hyperplane is drawn in the original featur
terpolate the relevance model with the original query modépace. The equation of this hyperplane provides the discrim
P'(w|R) = AP(w|R) + (1 — \)P(w|Q). For our runs where hant functiong(R|D, Q) that is subsequently used for scoring
we do this, we specifj\. In our experiments the relevancglocuments (or fixed length passages).
model is truncated prior to interpolation with the query.-De The indexed elements (documents or passages) are treated

pending on the module, a second truncation and normaliza®s instances in the feature space. For a test topic, Q, an in-
process is performed. stance D is scored based on the value of the discriminant func

tion g(R|D, Q). The instances are then ranked based on this
3.1.5 RETRIEVAL USING SUPPORTVECTORMACHINES  SCOre.
Of the runs that UMass submitted, several runs involved siee Y 16 BOOTSTRAPPINGSVMS

o;zsuq_ﬁ(_)rt ver(]:tqr machn;es :;(.)r passage or d%m:meni:rgeltnelypevious work has balanced classes by random sampling from
[. ] 1S tec nique applies Iscriminative models to mia- -, . negative training instances [32]. We propose anotlér te
tion retrieval. Previous work has demonstrated that théoper niqlue for instance sampling, which we refer totamtstrap-

mance of support vector machines on the document retrle? 0. This method differs from the random sampling technique

: : m
task is on par with that of language models. Our document fgspe gejection of negative training instances. All positin-

trieval and passage retrieval experiments on HARD 2003 teslces are used for training as in the previously desceied
qgueries and HARD 2004 training queries showed that USiHﬁ’ng method. In bootstrapping, negative instances are s
SVMs gave better results than traditional language models. | o following way. First, an’ initial SVM is created using
Support vector machines are a class of discriminative supgg technique described in section 3.1.5. Then, negate-tr
vised learning models. SVMs used for classification creat(?n@ instances are selected from only the negative exarmngites
hyperplane that maximizes the margin from the training exaglassifiecby the initial SVM created in step 1. As many nega-
ples. The discriminant function used to separate the taseR tjye instances are selected as there are positive instafibes
isgivenby:g(R|D, Q) = weg(f(D,Q))+b, whereR denotes yaining set is used to create an SVM boundary as described in
the relevant clasd) is a documenty) is a queryf(D, Q) isthe gection 3.1.5.
vector of featuresw is the weight vector in kernel space that sampling from the set of misclassified negative documents,
is learned by the SVM from the training examplesjenotes 55 opposed to sampling from all the negatives, will produce a
inner productp is a constant and is the mapping from input set of negative training instances that are closer to thitiyms
space to kemel space. The value of this discriminant fonctipstances in the feature space. The intuition is that thlk wi
is proportional to the distance between the document D aad syt in a boundary that is still good for ranking but hasdew
separating hyperplane in the kernel space. misclassified instances on the positive side.
The features are term-based statistics commonly used in in-
formation retrieval systems such Hsidf and their combina- 3.2 Clarification Form Feedback
tions as shown in Table 6. Each of the six features is a sdifms year's HARD track again permitted sites to request one
over the query terms. round of feedback from the topic creator. UMass studied four



Features Hybrid Features
1] Xgeqnplog(e(a, D)) > wev P(w|Q)log(c(w, D))
2 S log(1+ <sP)) S ey Pw|Q)log(1 + <2
3 > q.conp 108(idf (¢:)) > wev P(w|Q)log(idf (w))

4l ¥, conpllog(z)) Ywev P(w|Q)(log(55))

5| S, log(1 + 2&2idf (g:) | ey Pw|Q)log(1 + LsPhidf (w))

n c(qi, c c(w, C
6| > iy log(l+ (\qD\D) C(l‘li,‘C)) > wev P(w]@)log(1 + (\D?)%)

Table 6: Features in the discriminative model&w, D) represents the raw count of woudin documentD, C' represents the
collection,n is the number of terms in the query, is thesize-offunction andidf(.) is the inverse document frequency. In the
case of the hybrid feature®B(w|Q) refers to a query model as described in Section 3.1.3. Wealefif0) = 0.

methods for eliciting user feedback. Different manifastag of words as feedback candidates [22]. In particular, we were in

these methods appeared on our submitted clarification formterested in the use of proper names rather than arbitranster
as feedback sources. To accomplish this, we gathered the top

3.2.1 (QARIFICATION FORM SUBSECTIONS 200 150-word passages after an initial retrieval and ran BBN

PassagesAlthough the three minute time limit constrained oudentifinder across this set of passages [2]. We extracied th

ability to request true document-level relevance judgsiené person, place, and organization names from this run and nor-

assumed that the presentation the most relepassagese- malized the names by down-casing and removing punctuation

trieved would serve as an acceptable surrogate. Spegificalhd spaces. After removing names such as “New York Times”,

we performed SVM-based retrieval on a passage index COmEP”, and other source tags, we presented the user withdhe 1

prised of 150-word overlapping passages. We used a ling@yst frequently occurring people, places, and organiaatio

model trained on TREC collections 1 and 2. We then split theFor each of these types of named entities, the user was also

top 15 document-unique passages into 25-word passagesiagdented with a text box in which enter named entities not in

selected the passage which the SVM scored the highest. Theg@op 15 for that type.

15 25-word passages were then presented to the user with the

document title and time stamp for feedback. Temporal FeedbackPrevious work has shown that some topics

In addition to selecting the top 15 document-unique 15@emonstrate strong temporal structure [9, 26]. In ordelitit e

word passages, we also experimented with using aggloméeanporal biases in the information need, we asked the user fo

tive clustering to remove redundancy from the passages peevant months in the year spanned by the collection.

sented. We used group-average, agglomerative cluste&t@ig [

Term vectors were weighted according to a tf.idf schem®2.2 CFFICIAL CLARIFICATION FORMS

weight(z;) = x;/(log ((|C] +1)/(0.5+ df;))). Using these CF1 Our first clarification form included a list of 15 25-word

vectors, a cosine measure was used to compute the similgragsages derived from the top 15 150-word passages, a query

matrix. We clustered clustered 200 150-word passages ufgformulation text box, a free-text named entity text baxd a

a threshold similarity of).6 was reached. At that point, thelemporal feedback interface.

largest 15 clusters were selected. The 15 150-word centroid

to be handled as above. word passages derived from clustering, a query refornunrati

text box, a free-text named entity text box, and a temposalfe
Query ReformulationBecause the title and description subseback interface.
tions of the topic do not often serve as a good representation
a realistic user query, we allowed users to modify the stdpgeF3 Our third clarification form included the list of 15 people,

and stemmed version of their title and description querpaisil5 places, and 15 organizations with free-entry for eachyent
a free entry text box. type, a temporal feedback interface, and a query reforioulat

text box.
Extracted EntitiesPrevious work has shown that user feed-
back of term lists tends to have little (and sometimes negpti3.2.3 INCORPORATION OFRESPONSES
impact on retrieval performance [36]. We were interested RassagesPassage feedback was used in two ways. First, we
exploring the potential advantage of using different typés performed query expansion based upon the relevant passages



A query model was constructed by uniformly combining th&ages of different lengths could improve our ability to ratu

language models of the relevant documents. We selectedphenly the relevant portions of documents. In order to keep our

200 terms from this distribution and renormalized the weightext index relatively small and maintain the theoreticadsibil-

This was our final query model for relevant passages. Segonity that any passage of any document could be retrieved by the

passage feedback was used in order to re-rank documents atybtem, we chose to extract passages from highly ranked doc-

end of the treatment. Specifically, we multiplied all finabses uments at the time of retrieval, rather than indexing paldic

by 1 if they were from a document marked relevanif, froma passages in advance.

document marked non-relevant, and otherwise. Previous work has found no benefit to retrieving passages
of different lengths, compared to overlapping fixed-lenggks-

Query ReformulationWhenever the user reformulatedaquergages [19, 3]. However, past studies have only evaluated pas

we discarded the original query and constructed a query moggye retrieval by its ability to retrieve relevant docunsedtie

from the new query strings. in part to the unavailability of passage-level relevanadgju

. .. ‘ments. Now that the HARD track has provided these judgments

B e ol he svluaion  basedon more e grine reiem,

. é&lded to revisit this question.
named entity query model.

Temporal Feedbackremporal feedback was used in order t8'4'1 EXTRACTING RELEVANT PASSAGES

re-rank documents at the end of the treatment. Specificaff! method of extracting relevant passages from documents i
we multiplied all final scores by if they were from a month INSpired by work by de Kretser and Moffat [7] that assigned a

marked relevant) if from a month marked non-relevant, an(gelevance score to every word in a document. They used term
0.5 otherwise. frequency within the query and inverse term frequency in the

corpus to determine the score of each word, and used several
3.3 Fixed-Length Passage Retrieval different functions to determine how much query terms con-

Passage retrieval was one of the issues that were studiedtaguted to the scores of surrounding words.
of the HARD track. The central goal of the track was to perform Our approach to selecting relevant passages is simildrain t
high accuracy retrieval. Retrieving passages instead alavheach term from an expanded query representation is assigned
documents could potentially return less non-relevantaete Score which affects the scores of proximal words. Howeber, t
top of the ranked list, thereby increasing the accuracy ef tpcores we use are derived from language models, and the task
search. is somewhat different.

Previous work [3] on passage retrieval has shown that therd his process of extracting passages for a topic starts tth t
is no significant improvement in retrieval performance whé@p-ranked documents from some documentrun and a language
“real” passage boundaries are detected, using sentenoelbotodel representing the topic. Of the different topic modeds
aries or paragraph boundaries. Fixed length passages éene iied, the best-performing one was a mixture model between
shown to perform as well as passages extracted using hesirighe maximum likelihood representation of the original quer
on document retrieval tasks [3]. We, therefore, decideddida and the top 50 terms from the relevance model for the query, as
the overhead involved in creating a system that segments dégscribed in section 3.1.4.
uments into passages “cleverly” and opted to use passaagtes thWe refer to the range of word positions in a document that
have a fixed word length. a particular query word affects as region of influence The

We explored various approaches to passage retrieval. $pEeadofaquerytermisthe number of words before it and after
studied the performance of passage retrieval systems shait it that that query term influences. Thus, the size of the regio
query likelihood, relevance models and support vector n@f-influence is equal to (% spread) + 1. This method takes as
chines. Passage retrieval using SVMs, described in 3.1:5 f@rameters the minimum spread and the maximum spread that
formed better than the other systems. We also explored @i particular query term can have. The weights of the topic
comparative utility of retrieving the best passages from tohodel are then linearly scaled to fall between these minimum
ranked documents versus indexing overlapping passages &fimaximum values. For all of our submitted runs that used
scoring each of these independent of the document that the passages of varying lengths, the minimum spread was 1 and the
sage came from. The latter method gave higher precisionro@ximum spread was 25.
our training data. Therefore, we scored pre-indexed passag We extract any group of words that falls within the region of
for our final run. influence of any query term as a passage, discarding passages

One of the issues that we had to resolve was the size of paigh fewer than 400 characters. Next we score the remaining
sages to be retrieved. Experiments on HARD 2003 test quefi@éssages as described in the following section.
indicated that retrieval using 100 word passages gave tste be
results. This was the passage size that was used for all #k fid-4.2 S ORING PASSAGES

passage runs. We experimented with several methods for scoring passages
that fall into two basic classes. The first group used SVMs to
3.4 Variable-Length Passage Retrieval score passages. The second assigned scores equal to the neg-

One of the questions UMass explored through the passageatie relative entropy between the topic and passage lgggua
trieval portion of the HARD track was whether retrieving pasnodels, but differed in how the passage was modeled.



Metadata Pos. Neg. Total Metadata Pos. Neg. Total
Genre news-report 848 491 1339 Genre news-report 2603 2280 4883
Genre opinion-editorial 147 1192 1339 Genre opinion-editorial 1633 3250 4883
Genre other 344 995 1339 Genre other 647 4236 4883
Geography US 590 758 1348 Geography US 1470 1451 2921

Table 7: Counts of human judgments collected for the gefrgble 8: Counts of judgments obtained by using the
and geography metadata broken down by positive and negatikéYWORDelement of the documents to automatically guess
judgments. a document’s genre and geography.

Using the SVM models described in section 3.1.5 to scdaresome other manner. The number of judgments collected in
the passages did not perform as well as other methods onttti® mainly automatic fashion are shown in Table 8.
training data, regardless of which topic representatiomsesl.  While we knew that this process would lead to mistakes, we
This was surprising because this technique works quite weiil spot check the extracted documents, and we felt the gain
with fixed-length passages. This could be a result of chgosfrom the additional training data exceeded the cost in rasscl
the wrong topic representation, a bug in the implementation sified examples. Also, we had counter balanced this autemati
maybe the non-uniform passage lengths have an adverse eftadly extracted data with over 1000 human judgments cogerin
For the class of relative-entropy-based measures, we tradicsubcollections.
three different topic models. The first used Dirichlet snidrog
of the maximum-likelihood passage model with the collattid3.5.2 Q.ASSIFIER TECHNOLOGY
model as the background model. The second used Diriché used linear support vector machines (SVMs) as our classi-
smoothing of the maximum-likelihood passage model with tfiers because of their success at text classification [4110J6,
document model as the background. Neither of these methadd their ability to produce a ranking rather than merelyaas|
performed well on the training data. prediction. The linear SVM learns a hyperplane in the featur
The best-performing passage representation, used Space of the training examples that separates positiverfggm
UMassVPMM and UMassCVC, was a mixture of the colle@tive examples. A document’s distance from the hyperplane d

tion, document, and passage models. termines the degree to which the SVM predicts the document
is a positive or negative example of the learned class. e use
p(w|®psc) = Ap(w|Omr,)+ Aap(w|OnrL,) SV M9t with its default settings compiled for Windows to
+ App(w|Onrr,) (3) perform all classification [15].

Our., Onmr,, andO,yr, are the maximum likelihood collec-3.5.3  QASSIFIER FEATURES

tion, document, and passage models respectively. The tHNgused the same set of features for each of our classifiers.

lambdas sum to 1. In our submitted runs,was 0.8, and the Our selection of features was guided by the choices othees ha

other two parameters were 0.1. used for the classification of text genre [18, 20, 37, 8, 11¢ W
Future work will investigate the possibility of using twd-di used the 10K most frequently occurring tokens in the corpus.

ferent topic models for the passage extraction and passage df @ document contained one of these tokens, the correspgndi

ing stages of this technique. feature value was 1 otherwise it was 0. We also used the out of
vocabulary probability mass. The 10K most frequently oecur
3.5 Metadata ring tokens constituted our vocabulary. We made eight lginar

For metadata our approach was to take a ranked list of dofaatures, one for each subcollection in the HARD collection
ments and rerank the list based on the topic’s metadatasialéd-E, APE, CNE, LAT, NYT, SLN, UME, and XIE. Finally, we
For the genre and geography metadata values we trained classistructed a set of features focused on various lengthuresas
fiers to determine to what degree a document satisfies the metaa document: number of tokens, average token length, aver-
data value. Documents that better satisfy the metadate@vakge sentence length, average paragraph length, variapassin

are moved up in the ranked list compared to those that do goiph lengths, average corpus frequency of tokens, and four

satisfy the metadata values. features that measured the number of wotds X characters
long whereX was one of 6,7,8, and 9. We normalized each
3.5.1 [DATA COLLECTION FORCLASSIFIERS of these measures to vary between 0 and 1. We first took the

We used several human annotators to obtain metadata judg-of the sentence, paragraph, and document length feature
ments on documents from the collection. The majority of tii@fore normalizing them.

judgments came from one of the authors. Table 7 shows the

breakdown of judgments obtained by humans for each me3a5.4 (Q.ASSIFIER TRAINING

data category. To deal with imbalances in the number of positive examples
To boost performance, we automatically extracted trainipgr class, we randomly oversampled from either the positive

data from the corpus using the corpus’ existing metadata. Ttegative examples, whichever was in the minority until 5% o

AP wire, New York Times, and LA Times either contained exhe examples were positive [40]. No other special techrique

plicit metadata in theeKEYWORDelement or was discerniblewere used.
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Metadata Avg. Prec. Accuracy F1 techniques.

Genre news 0.99 0.96 0.96

Genre op-ed 0.97 0.95 0.91 UMassBaseQL This run uses the maximum likelihood
Genre other 0.82 0.92 0.76 query model as described in section 3.1.4. It used both
Geo. US 0.96 0.92 0.91 the title and the description. Smoothing was performed

. . using the Dirichlet prior with its parameter set to 1000.
Table 9: This table describes the performance of SVM ClasaMassBaseRMS For this run, we used the title and de-

|-
fiers on the labeled data. All performance measures are a%%ﬁption and the relevance modeling approach described
ages from 3-fold cross validation. The class examples aze OYn section 3.1.4. We used the first 50 documents retrieved

sampled so that positive examples comprise 50% oftheltr@in{o build the relevance model. The model was truncated
examples. to include only the 200 words of highest probability with
a minimum probability of 0.001. The foreground model

The performance of the classifiers on the final dataset{{f¥ title and description) received a weight of 0.6 when
shown in Table 9. We aimed to improve average precisidRixed with the relevance model. Smoothing was performed
which measures ranking ability, while keeping an eye on tH&iNg the Dirichlet prior with its parameter set to 1000.
other measures. One could obtain a high average precidtylassBaseSVM This run used a support vector ma-
while doing poorly on accuracy. chlpe built from the nqrmal features_ in Table 6 lto

While these metrics are certainly indicative of the clasgifi '€trieve documents using a hybrid  representation.
power, some caveats must be stated. The HARD corpus cgilassMerge This run merged three different rankings.
tains many articles that are posted to the newswires maltiB-Ihe first ranking used CF1 and all assomated_feedback. _Thls
times in order to add more information or make small correlin used the passage feedback and reformulation for bgiklin
tions. Our automatically judged articles may in fact comtaflUery model. A hybrid SVM was used for an initial retrieval.
several near copies of the same document. In addition, we §#iS ranked list was reranked using temporal and document

cluded many examples from the same columnists. It is likdfgdback. List two is UMassF. List three was identical to
that a columnist’s pieces are more similar to each other ghaHMasSRGG for the document topics. For the passage topics,

selection of opinion pieces written by different authorege Passages were reranked using the genre and geography meta-
duplicates can thus straddle the train and test sets of fhigi3-data as described in section 3.5.5. The source of the passage

cross validation and artificially inflate the performancenice. C@me from the fixed length SVM passage retrieval used by
run UMassCFMC, which used a query model produced by

3.5.5 METADATA RERANKING CF1 and related text. These passages were reranked prior to

We reranked the results based on a linear combination of ¥ggnoval of overlap as opposed to the passages in UMassCFMC
normalized outputs of both the retrieval and classifier otstp Which were reranked after overlap in the passages had been
We normalize each classifier’s output across the whole sorpigmoved. The three lists were each normalized and merged
For each topic, the document scores were normalized with Byesumming the scores of identical documents or passages
rank 1 document score set to 1 and rank 1000 document s@d ranked according this sum. Overlap in passages were
set to 0. We rerank passages as though they were documerf@moved and the lists were trimmed to the top 1000 results.
We tuned the linear combination with a simple parametdMassCFMC This run was a pipeline of the CF1 clari-
sweep using the LDC hard-relevance training data augmerfiégtion form, bootstrapped SVM retrieval, and genre and
with additional UMass judgments. The best coefficients tbufeography metadata reranking. ~ The linear bootstrapped
weighted the original IR results at 0.5, geography at 0.4, afodel used for UMassF was used with the query gener-

genre at 0.4. ated from the responses to CF1 as well the related text.
Ranked lists were generated for document and passage
3.5.6 USE OFRELATED TEXT topics in the same manner as for UMassF. The results

To utilize the related text metadata, we created a maximken liwere then normalized and reranked using the genre and
lihood model of the related text provided with the topic aind | geography metadata as per section 3.5.5. We performed tem-
early mixed this model with a model created for the title afpral and document feedback to provide a final ranking.
description. This mixture model was used as the query. A pdMassCFC The linear bootstrapped model used for
rameter sweep was used to find the best mixture ratio on thdassF was used with the query generated from the
training topics. The title and description model had a weigtesponses to the clarification form, CF1. Ranked lists
of 0.4 and the related text model had a weight of 0.6. We dkgre generated for document and passage topics in the
not differentiate between on-topic and relevant relatetlaad same manner as for UMassF. We performed tempo-

used both together. ral and document feedback to provide a final ranking.
UMassCMC The initial retrieval was performed us-
3.6 HARD Runs ing a query model built from CF1l. These results were

We submitted three baseline runs (UMassBaseQL, UMa®en reranked using topic metadata values. We uti-
BaseRM3, UMassBaseSVM) that did not use any of the meliaed the geography, and genre metadata to rerank the
data, clarification form, or passage techniques described eesults from the clarification form. We performed tem-

lier. Our other ten runs aimed to investigate the use of thgswal and document feedback to provide a final ranking.
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UMassCVC UMassCVC used variable-length passage tedPassage RankingComparing the baseline, CF1, and CF2 rows
nigues described in section 3.4, starting from the baselinelables 10, and 11, we observe that, in general passage feed
document run UMassBaseSVM and the top 50 terms from theck tends to improve performance. This result is not ssHpri
guery model generated from the response to clarificatiom foing given previous work in relevance feedback. What is kelitt
CFL1. After variable-length passage retrieval, we post@ssed more surprising is that clustering the results did not piewny
the results as described in 3.2.3. For the 25 topics where didwantage over the standard ranking. In fact, clusteritgnof
retrieval element was documents, the results we submitbed wesulted in worse performance. One explanation for thiseh
identical to the results from our baseline run UMassBaseSVidr is the strictly positive nature of our feedback. Querydno
UMassF For the 25 document topics, query models wesds were built from positive documents. Negative inforoati
generated using the top 10 results of a preliminary rankeds essentially discarded. Therefore, to maximize the amou
list as described in section 3.1.3. This preliminary ligtf information it receives, a system should get feedbacknfro
was obtained by retrieving 100 word passages using qu#rg documents which it imost confidendabout. By definition,
likelihood. The title and description was used as the queahese documents (or passages) will be the ones at the top of th
for each topic. A linear bootstrapped model was useahked list. This intuition is confirmed by the number of pas-
for retrieval. The top 1000 documents were returned feages marked relevant in the CF1 and CF2 clarification forms.
each of the 25 document topics. The same processQasaverage, CF1 garnered more positive responses from users
above was repeated for the 25 passage topics, except th@his result motivates two questions. First, how do we in-
a passage index was used for retrieval. The top 1000 noorporate negative feedback into our existing framework? R
overlapping passages were returned for each of these togiearch in retrieval by language models has ignored theignest
UMassRGG This run utilized the related text, geographyf negative feedback. If interaction and relevance feeklimc
and genre metadata. Documents were returned for all topteshbe considered an important aspect of HARD, it seems nec-
The metadata was utilized as described in sections 3.8s8ary to develop models for negative feedback. Second, how
and 3.5.5. Retrieval was via query likelihood with Diricheo we improve clustering so that removing redundancy does
let smoothing. The smoothing parameter was set to 1080t result in detrimental loss of information in feedback#sT
UMassVPMM UMassVPMM was a baseline passage rujuestion assumes both that the feedback in the likelihaakt ra
of sorts; it does not use any metadata or clarification foiing approach is redundant and that the feedback in the clus-
feedback for retrieval. It used variable length passageevet tered approach is inferior. These assumptions need to be con
as described in section 3.4. We used the interpolated reteveirmed. Moreover, a similar question presents itself in figve
model query model described in 3.1.4. We used the baselimel subtopic retrieval and models from work in that field doul
run UMassBaseSVM as the starting ranked document lighprove future passage-based feedback forms.
Because we found in training that boosting the scores of
passages from the top 25 documents improved results, Ne@ned Entities The results for runs using named entity infor-
added a constant to the score of each of these passagesion seem to confirm the difficulty of handling term-based
large enough to ensure that they would be ranked abdsedback. The impact of named entity expansion is inconclu-
all other passages. For the 25 topics where the retriesigle. Training experiments demonstrate that, given theero
element was documents, the results we submitted were id@sighting of named entities, retrieval can be improved ® th
tical to the results from our baseline run UMassBaseSVMvel of document feedback. That is, if we can detect that a
UMassC2 This run used the passage feedback and ggerson name is more important than a geographic rfama
formulation for building a query model. A hybridparticular query then we can match document feedback per-
SVM was used for an initial retrieval. This ranked lisformance. However, the models we constructed used a uniform
was reranked using temporal and document feedbagkight for all queries; person names always weighed the same
UMassC3 This run used the named entity feedback arg geographic and organizational names. Future expesment
reformulation for building a query model. A hybrid SVM waswill attempt predict the relative import of entity types bdon
used for an initial retrieval. This ranked list was reranksihg the query and corpus statistics.
temporal feedback.

3.7.2 METADATA

The results of using the related-text (RT), reranking rtssoy
genre and geography (GG), and the combination of RT and
In order to allow an initial analysis of our various techrégu GG can be seen in Tables 10 and 11. For document retrieval,
we generated several new runs based on different combimae use of related-text resulted in results as good as thefuse
tions of feedback, metadata handling, and retrieval geaityl the clarification form. In these tables, there is no evidemee
These runs were evaluated using relevance judgments forwlee able to leverage genre and geography. We examined the
HARD 2004 topics. Results are presented in Tables 10 and (de of genre applied to runs UMassBaseQL, UMassBaseSVM,
UMassBaseRM3, QL+RT, and RM+RT on topics requesting a
specific genre. We found an average 7% increase of precision
at five documents for hard relevance and 8% for soft relevance
Our initial experiments allow us to investigate broad issine No similar increase was found for use of geography metadata.
ranking alternatives and named entity performance. We suspect the value of the genre and geography metadata

3.7 Results and Discussion

3.7.1 QARIFICATION FORMS
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| | QLaoc | RMyoe | SVMIE | VPMM | SVMH]e™? | SV Mbor

Psg Psg

[baseline | 0.222 [ 0.218 | 0223 | 0211 | 0.174 | 0.85 |
GG 0.217] 0222 | 0.224 0.185 0.178 0.192
RT 0272 0262 | 0.214 0.196 0.231 0.214
GG+RT | 0.257 | 0.255 | 0.207 0.196 0.231 0.206
CF1 0.335] 0.331 | 0.307 0.308 0.298 0.294
CF2 0.263] 0.262 | 0.252 0.306 0.253 0.275
CF3 0228 0.230 | 0.246 0.191 0.192 0.207

[GG+CF1] 0326 0327 | 0289 | 0295 | 0300 | 0.309 |

Table 10:Binary Preference at 12,000 characters for passage andngotuuns.Q L refers to query-likelihood retrievaR M to relevance
model retrieval SV M to retrieval using a support vector machimained using normal features, an®lV’ M H to retrieval using a support
vector machingrained using hybrid features. BotBV M and SV M H used hybrid feature vectors fagtrieval. Subscripts indicate whether
documents or passages were presented in the ranked lisrs8tipts indicate the data which the SVM was built from. G@srused genre
and geography metadata, RT used related text, and CF* uaefilcaltion form query models and re-ranking.

QLgoc RM g SV Mireet2 [ SV M HLreet? SV Mbeot

hard soft | hard soft | hard soft | hard soft | hard soft
baseline | 0.327 0.320] 0.343 0.339| 0.322 0.314{ 0.286 0.300| 0.287 0.318
GG 0.307 0.314] 0.325 0.330] 0.336 0.319| 0.308 0.297| 0.292 0.311
RT 0.359 0.373] 0.348 0.355| 0.365 0.361] 0.337 0.353| 0.342 0.354
GG+RT | 0.363 0.363| 0.348 0.353| 0.347 0.355| 0.358 0.351| 0.317 0.342
CF1 0.341 0.361] 0.339 0.362] 0.357 0.374| 0.335 0.358| 0.347 0.363
CF2 0.316 0.330[ 0.315 0.329] 0.323 0.345| 0.320 0.338| 0.336 0.372
CF3 0.333 0.298 0.333 0.303| 0.332 0.329| 0.319 0.323| 0.297 0.326

[GG+CF1] 0.331 0.368[ 0.333 0.368] 0.352 0.368 0.334 0.353 0338 0.361]

Table 11:Document R-Precision for hard and soft relevance. Labelslascribed in the caption to Table 10.

is limited partly because topics may in fact disambiguateth are somewhat misleading. Although VPMM did better than
selves with respect to metadata such that the majority of dmwth the bootstrap SVM and the hybrid SVM as a baseline,
topic documents already satisfy the metadata. We expeagderiments performed after the TREC submission deadline
topics to be ambiguous with respect to their metadata, bnymahowed that the gain there comes from the difference in re-
were not. Eleven of the 45 topics were completely unambigtieval method, not in passage length. Preliminary expenits

ous, i.e. all on-topic documents satisfied the metadatakibhgo using the mixture model of VPMM on fixed-length passages
at the fraction of on-topic documents that were relevamgssc provide a better baseline than any of the document or passage
topics the median fraction was 0.83. The training topicseweuns presented here.

similarly unambiguous with respect to metadata. The bootstrap SVM method provides a small gain over the

Another factor limiting the power of genre and geograp hrid SVM method for all combinations of clarification fosm
metadata could be that searchers are unable to express metadata except for those involving related text réste

metadata needs correctly. On an initial exploratory atslys ingly, it seems that within the group of passage runs, thetow

the retrieval results, we dl_scovered many documents judged the baseline score, the bigger the boost from related text. |
evant that clearly fall outside the requested metadatacBers fact, VPMM is even hurt by the use of related text

know a relevant document when they see one, but a priori they _ _ _ o
don’t fully know what metadata is required of a relevant docu 'he major question raised by our findings for passage re-

ment. trieval is whether passage retrieval is worthwhile, giveatt
document retrieval almost always does better than passage r
3.7.3 RASSAGERETRIEVAL trieval for this evaluation metric. Or are we simply using th

Table 10 reveals two major findings in passage retrievast,Fimvrong evaluation metric for what we are really trying to mea-
documentruns (shown in the first three columns) generaily tesure? The official TREC 2003 HARD track metric of passage
to do better than passage runs (columns 4-6) at passageRrprecision got at the notion that systems should be rewarde
trieval, when a high-precision character-level metrichrsas for returning text from many different documents. The clkara
binary preference at 12,000 characters is used for evatuatier level measures correct a flaw in passage-level R-pogcisi
Second, CF1 seems to provide big improvements over the baisat favored very short passages, but remove this notian tha
line for every retrieval method. there is some inherent good in returning text from a variéty o

As for the question of whether variable-length passages idocuments. The problem of how to evaluate passage retrieval
prove high-accuracy passage retrieval, the results ireta@l has clearly not been solved yet.
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