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Abstract

Users tend to remember failures of a search session more than its
many successes. This observation has led to work on search ro-
bustness, where systems are penalized if they perform very poorly
on some queries. However, this principle of robustness has been
overlooked within a single query. An ambiguous or underspec-
ified query (e.g., “jaguar”) can have several user intents, where
popular intents often dominate the ranking, leaving users with
minority intents unsatisfied. Although the diversification literature
has long recognized this issue, existing metrics only model the aver-
age relevance across intents and provide no robustness guarantees.
More surprisingly, we show theoretically and empirically that many
well-known diversification algorithms are no more robust than a
naive, non-diversified algorithm. To address this critical gap, we
propose to frame diversification as a risk-minimization problem.
We introduce VRisk, which measures the expected risk faced by
the least-served fraction of intents in a query. Optimizing VRisk
produces a robust ranking, reducing the likelihood of poor user ex-
periences. We then propose VRisker, a fast greedy re-ranker with
provable approximation guarantees. Finally, experiments on NTCIR
INTENT-2, TREC Web 2012, and MovieLens show the vulnerability
of existing methods. VRisker reduces worst-case intent failures by
up to 33% with a minimal 2% drop in average performance.
Code provided in https://github.com/RikiyaT/VRisk.

1 Introduction

Users remember the worst search sessions far more than the aver-
age ones [12, 24, 26, 50, 56]. This insight has motivated extensive
research on search robustness [12, 15, 17, 18, 33, 47, 50]. These
prior works typically consider the downside risk, with the goal of
minimizing the chances that users are unsatisfied with the search
results. The fundamental principle is that search systems that per-
form poorly on some queries should be penalized, even if they
perform well on average. However, these studies have only focused
on the risks of rankings at the query level and have not considered
the potential downside risks within a query.

This limitation becomes particularly problematic when queries
are ambiguous or underspecified, leading to multiple possible user
intents [10]. Consider a search for “jaguar” While many users may
seek information about the car brand, those interested in the ani-
mal may find search results entirely dominated by the car brand.
Naive ranking algorithms, designed to maximize a single relevance
score, naturally produce such unbalanced results, where users with
minority intents end up failing their search sessions.

The intent-based search diversification literature has long at-
tempted to address this robustness-within-query challenge, aiming
to generate a ranking to cover multiple intents [1, 9, 13, 32, 37]. Yet,
although preventing intent failures is a core motivation for diversity,
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existing approaches typically measure the average relevance across
intents rather than explicitly addressing the worst-case outcomes.
Importantly, we show mathematically that, in many cases, the fam-
ily of intent-weighted diversity metrics [1, 9, 37] offers no protection
in terms of robustness. For example, in the toy example of Table 1,
we show that NDCG-IA [1] favors a ranking that completely ig-
nores 49% of user intents. Consequently, as our experiments reveal,
many existing diversification algorithms are no more robust than a
naive, non-diversified ranking.

In light of this, we convert diversification into a principled risk-
minimization problem. We argue that a search result must be robust
within a query, in a way that minimizes the chances that users are
unsatisfied. Specifically, we introduce the first framework for intent-
aware risk minimization within a ranking, providing an evaluation
metric VRisk. Drawing inspiration from finance, VRisk analyzes
risk by adapting Conditional Value at Risk (CVaR), evaluating the
expected relevance loss for the least-addressed fraction of user in-
tents within each query. VRisk answers the question: “How bad is
the ranking for the worst f-fraction of intents.” VRisk can be baseline-
free, measuring absolute risk, but can also be computed relative to
a baseline system, following the common practice in existing IR
risk metrics like URisk [50] and GeoRisk [18]. VRisk is tunable and
intuitive, giving both risk and guarantee in its evaluation. Addition-
ally, we offer an efficient optimization algorithm called VRisker
with a strong optimality guarantee, making our approach practical
and theoretically robust for real-world problems.

Finally, we demonstrate that the robustness problem is miti-
gated through experiments on NTCIR INTENT-2 [35] and TREC
Web 2012 [11] datasets. Additionally, this problem extends beyond
search, as intent-based diversity has become a key concern in mod-
ern recommender systems as well [5, 23, 27, 42, 46, 52, 53]. Thus, we
also test on the MovieLens 32M [21] to verify that our risk-aware
framework addresses the same issues in recommender systems. Our
results show that the algorithm reduces worst-case intent failures
by up to 33% while sacrificing as little as 2% in average performance.

Our contributions are summarized as follows:

e We present the first framework for intent-aware risk mini-
mization in search, introducing a novel CVaR-based metric
for both absolute and baseline-relative risk assessment, for-
mally bridging diversification and robustness.

o We demonstrate mathematically and empirically that many
mainstream diversification methods are fundamentally not
robust, often performing no better than a naive baseline.

e We develop an efficient greedy algorithm with a strong
approximation guarantee.

e We demonstrate through extensive experiments on three
datasets that our algorithm consistently reduces worst-case
intent failures by up to 33% at the cost of only a 2% drop in
average relevance.
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2 Related Work
2.1 Risk-Aware Search and Recommendation

Most influential works on retrieval robustness treat the entire query,
rather than individual intents, as the unit of risk [12, 17, 33, 50, 55].
The proposed risk-aware frameworks generally penalize systems
that perform poorly on some queries, instead of looking at the
average performance. By favoring such robust algorithms, they
minimize the probability of users being unsatisfied. However, while
considering risks at the query level, they have not considered the
risk that intents may be poorly addressed within a single query.

Portfolio-theory-based approaches [45, 49] assess the variance
of a single ranking by treating each document’s relevance score as
the ambiguous factor. This perspective differs fundamentally from
ours, as we focus on ambiguity at the intent level rather than at the
document level.

Other studies consider risks in decision-making, search, and
recommendation [19, 20, 22, 25, 44], but model the random variable
at the user, session, or policy levels. Our method complements
these approaches by applying the tail-risk logic directly to the
diversification step, guaranteeing that even the users with minority
intents in the query are satisfied.

2.2 Diversification in Rankings

The naive ranking algorithm, which ranks documents in the order
of relevance, often only shows the majority intents and ignores the
minority intents of a user. The literature of diversification in search
has long aimed at providing reasonable satisfaction across intent
groups [1, 9, 32, 37]. However, despite such clear connections with
the motivation for robustness, most diversification frameworks
generally consider the average rather than risks or guarantees. In
fact, we find that IA metrics [1] and D-measure [37], two of the
most common diversification metrics, provide identical results to a
naive, non-diversified metric in many cases. Since many diversifi-
cation studies are built under their logic, we show empirically that
many diversification algorithms perform very poorly in terms of
robustness.

Some studies provide diversification methods and metrics aim-
ing to minimize the probability of a user not clicking on any doc-
ument [1, 32, 52], which is fundamentally similar to our goal of
robustness. However, typically assume a cascade behavior assump-
tion and associate only click probabilities, which are rare cases
in practice. As we will show in the experiments, these methods
perform poorly with graded relevance (e.g., nDCG) and explicit
ratings. Some other studies consider the coverage of information
without explicitly considering intents, thus conceptually different
from what we aim [4, 31].

Fairness in rankings is also a related field that ensures that each
candidate group gets a fair amount of exposure in a ranking [36, 40].
It does not ensure that the user is given a diversity of exposure,
thus conceptually different from our goal.

3 Problem Formulation
3.1 Preliminaries

We consider the evaluation of a single top-k ranking, denoted Ry.
Let q denote a query with intent set C(q) = {ci,...,cm}, where
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each intent c¢; represents a distinct information need associated
with q.

We denote Pr(c | g) as the probability that a user issuing query q
has intent c. Following common prior work [1, 8, 32, 37], we assume
the intents are mutually exclusive, i.e, Ycec(q) Pric | q) = 1.

Letrel(d | g,c) € [0, relymayx] be the relevance of documentd € D
for query q given a user intent c. We suppose that rel(d | g,c)
and Pr(c | g) are known or estimated beforehand, following the
common setting in prior work on intent-based diversity [1, 9, 10,
37, 46, 52]. Their estimation is outside the scope of this work.

Naturally, the raw relevance of the document (that ignores in-
tents) is calculated by the expected relevance

reld|q)= E [rel(d|g.c)] 1)

c~Pr(clq)

Z Pr(c | q)rel(d | g,¢).

ceC(q)

This formulation is widely adopted in prior work [3, 6, 28, 37, 51, 54].

3.2 Standard Metric

To measure the value of a ranking, we take the average relevance

Vaa(Re | @) = 3 Y rel(d | ) @
deRy

While we use average relevance as a default metric throughout the
main text, the base metric V can be replaced with other standard
metrics (e.g., nDCG, DCG, ERR, Precision@k, RBP), which we will
also discuss in our experiments.

The optimal ranking for Eq. (2) and most standard metrics like
nDCG would be the naive ranking algorithm that selects documents
in the descending order of relevance

Naive(q) = argsortrel(d | q). (3)
d

However, since the relevance of a document is heavily depen-
dent on the intent probability (see Eq. (1)), such naive rankings
may contain only documents of the majority intents, and some
minority intents may be completely ignored. This is not robust, as
it may result in a poor search session when the user had a minority
intent [1, 9, 37, 41].

3.3 Intent-Weighted Metric

We now present another common evaluation method of a ranking
given some user intents. We denote the value of a ranking given
intent c as the average relevance

V(Relg.0) =1 > rel(d] o) )

deRy

Similar to Eq. (2), this denotes the average relevance of a ranking,
but for a specific user intent c.

Given this per-intent value V(R | g, ¢), another straightforward
evaluation method of the ranking would be to compute the intent-
weighted average (IW metric), denoted

Viw(Re | @) = Y Pr(e | @) V(Re | g.c). (5)
ceC(q)
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Table 1: Toy example of how nDCGyw (= NDCG-IA [1]) can ne-
glect diversification in a top-2 ranking. (a) is the setting, and
(b) shows the evaluation scores of each ranking. Although
the intent probability of ¢, is only 0.02 more than c;, nDCGw
favors a non-diversified ranking. As a result, 49% of the users
can be unsatisfied with the ranking,.

(a) Setting. (b) Evaluation scores.
c1 cy Ry nDCGpy nDCGgq

Pr(c | q) 0.51 0.49 [di,d2]  0.600 1.000
dy, ds] 0.502 0.871

reld, |gc) 1 0 [, d3

rel(dy | o) 1 0 [ds,ds]  0.400 0.667

rel(ds | g.c) 0 1

rel(ds | gc) O 1

This evaluation method also demonstrates the family of “IA” metrics
by Agrawal et al. [1] (e.g., NDCG-IA, MRR-IA), which are diversifi-
cation metrics aiming to value minority intents more. For example,
if the base metric V is replaced with nDCG (i.e., nDCGyy), this
matches NDCG-IA [1]. This is arguably the most common metric
for diversity, as the same intent-weighted paradigm also under-
lies widely used diversification metrics and algorithms such as
xQuAD [38], ERR-IA [6], D-measure [37], and a-nDCG [9].

3.4 IW Metrics are Surprisingly not Robust

While Viw (Rx | g) builds the ground of most diversification meth-
ods, we find that, surprisingly, when the base metric V is linear (e.g.,
DCG, average relevance, Precision@k), the intent-weighted metric
in Eq. (5) is identical to the standard metric in Eq. (2). Formally,
using average relevance as the base metric V, we have

VRl = > Priclg)p > relid] )

ceC(q) deRy

= % Z Z PI‘(C | q) rel(d | q,C) = std(Rk | q)

deRy \ceC(q)
(6)

This means an algorithm that maximizes Viw will favour the ma-
jority intent just as the Viq would. Thus, for linear base met-
rics V, the intent-weighted metric offers no protection to mi-
nority intents. Interestingly, D-measure [37], another common
diversification method, also reduces to the standard metric. Conse-
quently, the spectrum of intent-based diversification metrics and
algorithms [1, 9, 37, 38] are ineffective at providing diversity or robust-
ness with linear base metrics like DCG, Precision@k, and average
relevance.

For non-linear base metrics like nDCG, Expected Reciprocal Rank
(ERR) [7] and Rank Biased Precision (RBP) [30], the equality like
Eq. (6) no longer holds. Yet, these metrics can still fail to measure
the diversity of a ranking. Table 1 shows a toy example of how
nDCGyw favors a ranking dominated by one intent, despite the two
intent probabilities being almost equal. This is not at all robust, as
49% of the intents are completely ignored.
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Figure 1: Illustration of VRisk. Bar height shows per-intent
loss ¢(Rg, g, c) and the bar width shows the intent probability
Pr(clg). 5 intents are sorted by loss (worst — best). VRisk
takes the average of [//4, the worst-f intent probability mass.

Furthermore, empirical results in Section 6 reveal that intent-
weighted diversification algorithms for such non-linear metrics are
also barely more robust than naive algorithms.

4 Risk-Sensitive Metric: VRisk

To address the limitation that existing diversification methods fail
to account for robustness, we convert diversification to a risk-
minimization problem. Specifically, we propose a metric, VRisk,
that measures the expected loss of the least-addressed S-fraction of
intents, bringing the Conditional Value at Risk (CVaR) concept into
IR. VRisk is intuitive, baseline-relative, and easy to tune.

For each possible intent, we define a loss function as the loss of
intent-level value against the target level

{(Ri,,¢) = [Vigi(q,©) = V(R [ ¢.0)] )

where [-], = max(0, -) and Vg (g, ¢) is a target level for performance
on intent c. Vigt (g, ¢) is a baseline function capturing the satisfaction
threshold for intent c. Unless stated otherwise, we use the oracle
target, which is the best possible ranking for the intent

Vige(q.) = max V(R; | g.¢). (8)
3

By setting loss against the oracle, Eq. (7) answers the question:
“How well does the ranking satisfy the intent compared to the
ideal case?” We use loss instead of the raw value, as it is fair even
when there exist more relevant documents for one intent than the
others. Note, however, that when the target level is set to the oracle,
the minimization of loss matches exactly the maximization of raw
value.

Following previous query-level risk studies [18, 50], Vigt(g, ¢)
may also be a value of any baseline algorithm or some heuristic
threshold that we want to ensure, which we investigate in Section 6.

Now, to derive VRisk, let { be the S-fraction of the loss distribu-
tion, i.e. Pr(¢(Rk, g, ¢) > {) < . Smaller f§ places more weight on
rarer, worse-served intents. Then, VRisk is the expected loss of the
worst f-fraction of intents, denoted

Veisk(Re | 4: ) = E[t(Re. q.¢) | £(Re. g, ¢) > {]. )



Smaller VRisk is more robust because it reduces tail loss. Figure 1
illustrates VRisk when f = 0.20.

Since Eq. (9) is difficult to optimize directly, following the Rockafellar-

Uryasev formulation [34], we express our VRisk metric as

Visae(Re | i) =min [T+ 5 Y Pr(e | @) [0(Ruqie) =21, |

ceC(q)
(10)
VRisk can tell us both the risk of the ranking and the guarantees,
as explained in the example below.

ExXAMPLE 1. If Vris(Rk | ¢; B) = 1.0 at § = 0.05, we obtain

o Risk: The worst 5% of intents have an expected loss of 1.0,
o Guarantee': 95% of the intents have the loss always smaller
than 1.0.

4.1 Property of VRisk

Our VRisk metric is controllable and generalizable. Specifically,
B € (0, 1] is a tunable parameter that controls which worst fractions
we would like to care about. An interesting property is described
following proposition.

ProposITION 1. When 8 = 1, VRisk reduces to the expected loss

Vei(Re [ g p=1)= > Pric| @) - t(Reg). (1)
ceC(q)

Thus, our framework generalizes the average intent-weighted
optimization, while enabling control of tail risk via . Specifically,
a smaller f means a strictly safer system.

In short, VRisk converts diversification into an intuitive risk-
minimization problem driven by a single, intuitive parameter f.
Using VRisk, we are able to explicitly measure the robustness of a
ranking, unlike existing metrics that measure the average.

Why not minimax? The minimax criterion, which maximizes the
value of the single worst-served case, is typically more common in
the IR literature [15, 16, 29, 48]. In our case, minimax solves

n}g{n Crgr}a();) ¢(Ry, g, c). (12)
In Figure 1, the minimax task would be to minimize the loss of only
the left-most intent (i.e., intent with the most loss).

However, minimax is not suited for our problem, as it is not
tunable. Minimax must optimize for the worst intent, even if that
intent only occurs at a 0.0001% chance. In reality, we should not
lower the average utility just to fulfill such intent. In contrast, VRisk
looks at the worst fraction of the intents, where f controls the size
of the fraction, so it addresses a 0.0001% intent only if it lowers
fraction loss the most. Moreover, VRisk subsumes minimax as the
special case of f — 0.

5 Optimization of VRisk: VRisker

The VRisk objective gives us an explicit target of minimizing tail
risk, but finding the global optimum is computationally intractable,
as shown in the following proposition.

1Even better, 95% of the intents have loss < <10
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Algorithm 1 VRisker
Require: Query g, candidates D, length k, risk level
: Ranking R < @
. foreachranki=1,...,k do
select document that minimizes VRisk
d* «— argmindeD\R Wrisk(RU {d} | ¢; B)
Tie-break by maximizing Viw (RU {d} | q)
// append document to rank i
R« RU{d*}
end for
return Ranking R

b A A

PROPOSITION 2 (NP-HARDNESS). For variablek and any g € (0,1],
minimizing VRisk

min Vrisk(R ;
ReCD, |Ry|=k stk( k | q .B)

is NP-hard. Proof in Appendix A.1.

Due to the NP-hardness of the optimization problem, we pro-
pose an efficient ranking algorithm called VRisk Efficient Ranker
(VRisker), shown in Algorithm 1. VRisker is a greedy algorithm
that picks documents iteratively from the top position. At each step,
it adds the document that most reduces VRisk. When there is a tie,
it adds the document that maximizes the IW metric Viw (R | q).

VRisker is practical in terms of complexity. Let m = |C(q)| and
n = |D)|. Each risk evaluation involves O(m) arithmetic operations.
The run time is O(k?nm), but drops to O(knm) with incremental up-
dates, which is identical to the speed of prior greedy diversification
algorithms [1, 6, 38, 41]. Empirical comparison is in Figure 8.

5.1 Approximation Guarantee of VRisker

The VRisker algorithm has strong theoretical guarantees. When
the base metric V(- | g,c) is modular (e.g., average relevance,
Precision@k), the per-intent loss £(R, g, ¢) is monotone non-increasing,
and the risk-reduction function

O(R) = Visk(@ | ;) — Veisk(R | g5 B) (13)

is monotone submodular? Given the submodularity, we are able to
provide an approximation guarantee on VRisker, in Theorem 1.

THEOREM 1 ((1 —1/e) OPTIMALITY GUARANTEE). For modular
base metric V, let R be the optimal length-k ranking. Then, VRisker
returns Ry such that

O(Re) > (1-1)D(Ry), (14)

i.e., it captures at least 63% of the optimal risk drop. Proof in Appen-
dix A.2.

5.2 Guarantee for Non-Modular Metrics

When the base metric V is non-modular, such as nDCG, the risk-
reduction function ®(R) is no longer submodular, so Theorem 1
does not hold. However, we can establish a formal approximation
guarantee for VRisker using the concept of the submodularity ra-
tio [14]. A function has a submodularity ratio y € (0, 1] if the

2Submodularity follows because (i) adding a document can only lower each hinge-loss
term, and (ii) the convex combination inside CVaR is linear in these losses.
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marginal gain of adding an element to a larger set is at least a
y-fraction of the marginal gain of adding it to a smaller subset.

For example, for VRisk optimization with nDCG as the base
metric, we can show that the risk-reduction function ®(R) has a
data-independent submodularity ratio y > 0. Building on Bian et al.
[2], we prove the following theorem.

THEOREM 2 (NDCG-RISK APPROXIMATION). For any query q, risk
level B, and cut-off k, VRisker returns a ranking Ry that satisfies

O(Re) > (1-e7¥) ®(RY), (15)

wherey > wk/Zf:I w; is the submodularity ratio, withw; = 1/log,(1+
i) being the nDCG discount at rank i. Proof in Appendix A.3.

Theorem 2 provides a worst-case guarantee for VRisker’s per-
formance. The ratio y depends only on the ranking depth k, where
for typical depths such as k = 5,10, 20, the lower bound on y is
0.15,0.09, 0.05, respectively. While this theoretical bound is looser
than when V is modular, we show that VRisker is not an arbi-
trary heuristic. We also examine the optimality of VRisker on non-
modular base metrics in Section 6.

To sum up, VRisker is a theoretically grounded and efficient
algorithm that explicitly minimizes the risks of a user receiving a
poor ranking.

6 Experiments

In this section, we extensively evaluate our metric and method by
comparing with other re-ranking approaches on NTCIR INTENT-
2 [35], TREC Web 2012 [11], and on MovieLens 32M datasets [21].

6.1 Experiment Setup

Datasets. NTCIR INTENT-2 and TREC Web 2012 provide a list of
intents for each query, with their intent-specific graded relevance
rel(d | ¢,c¢). NTCIR INTENT-2 provides 5 relevance grades, and
TREC Web 2012 provides 6. While NTCIR INTENT-2 provides their
intent probabilities Pr(c | g), TREC Web does not provide intent
probabilities. However, following Clarke et al. [11], we let all intents
in the TREC Web datasets occur with equal probabilities.

To test generalization beyond search, we also evaluate on Movie-
Lens 32M [21], where intent-based diversity is of increasing in-
terest [5, 23, 27, 42, 46, 52, 53]. We treat each user as a query and
each genre as an intent. We select users with more than 200 ratings
to ensure sufficient per-user data. Otherwise, different re-ranking
algorithms can collapse to similar outputs under extreme sparsity.
Following Steck [41], we estimate Pr(c | q) from the user’s histor-
ical genre proportions and use explicit ratings as raw relevance
rel(d | g). For multi-genre items, we define per-intent relevance
via a Bayes-consistent allocation

rel(d | q)

rel(d | g.¢c) =1[ce C(d)]ma

(16)
where C(d) is the set of genre labels for d and 1 is an indicator
function. This construction ensures Eq. (1). We adopt an evaluation-
only protocol, where no recommender is trained, so as to isolate the
effect of the re-ranking objective. Unobserved ratings are treated
as non-relevant for evaluation only.

Additional statistics of the datasets are summarized in Table 2.

Table 2: Statistics of the datasets. (Note that the #Queries
denote #Users in MovieLens.)

Dataset #Queries  #Docs  Avg. #Intents per Query
INTENT-2 (JP) [35] 95 5,085 6.1
TREC Web ’12 [11] 50 15,200 6.0
MovieLens 32M [21] 42,902 71,933 8.0

Experimental Parameters. We set § = 0.10 as the default, meaning
that we focus on the average loss of the worst 10% of intents when
computing Vgisk. We also provide experiments where we sweep
to different values. The ranking length k is also an experimental
parameter, with the default length k = 10. The baseline performance
Vigt (¢, ¢) is also an experimental parameter, but set to the oracle
(Eq. (8)).

Importantly, we set the base metric V to average relevance (which
we denote AvgRel) as in the main text. Therefore, for the majority of
experiments, we only show results on VRisk and Vg4, as Vg = Viw
holds (refer to Section 3.4). However, we also test on nDCG, DCG,
ERR [7], RBP [30], and Precision@k to show the generalizability of
VRisk and VRisker.

Compared Methods. We compare VRisker with the following:

Naive. The naive ranking approach naively optimizes the stan-
dard metric Vyq as in Eq. (3). It does not care about diversity.

IW-Greedy. IW-Greedy is a greedy maximization method that
aims to maximize Viw in Eq. (5). For linear base metrics (e.g., average
relevance, DCG), IW-Greedy is strictly optimal, exactly matching
the Naive method. For non-linear base metrics, IW-Greedy has a
(1 - 1/e) optimality guarantee [6].

xQuAD [38]. An intent-based diversification method. Axquap,
the weight controls the balance between relevance and diversity, is
set to 0.5%.

MMR [4]. A diversification method that intends to maximize
the coverage without relying on intents. Similarity of documents is
computed by measuring the cosine similarity of TF-IDF vectors of
document texts for search tasks, and tags and titles for the recom-
mendation tasks. Avumr, the weight controls the balance between
relevance and diversity, is set to 0.5°.

For all main experiments, we also give comparisons with IA-
SELECT [1], FAIR [57], and Calibrated Recommendations (CR) [41]
in Appendix B.4.

Unless specified otherwise, instead of reporting the raw metrics,
results are shown as a percentage compared to the Naive ranking,
so that all curves share the same 100% center line, making the trade-
off between Wpisk and average performance (i.e., Vit / Viw) more
visible. For each obj € {Risk, IW, std}, we set

Voi (R
bj (Ri) X 100 (17)

AVoyj(Ry) = m A

For transparency, for each experiment, we also report the results
on the raw metrics in Appendix B.4. Note that AViw = AVyq for
linear bases, so we do not show both in most results.

3We sweep this in Appendix B.4 and confirm that it does not change the conclusion.
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Figure 2: VRisker is robust across base metrics V. The plots show how different methods perform on varying base metrics V,
tested on NTCIR INTENT-2 (left), TREC Web 2012 (middle), and MovieLens 32M (right). The top figures evaluate risk, AVRjsk
(smaller is more robust), which measures the expected loss of the worst f-fraction of intents. The bottom figures evaluate the
average performance, AViw and AVyq (larger is better). All values are relative to Naive = 100%. (k = 10, § = 0.10)

The values shown are the AVyp(Ri) averaged on all queries®.

The error bars indicate the 95% confidence interval, calculated by
treating each query/user as an independent observation drawn at
random from the population. We additionally provide statistical
significance testing in Appendix B.1.

6.2 Results and Q&As
We present our results via the following Q&As.

Q: Does VRisker work on different base metrics?

A: VRisker performs robustly across various base metrics, while
existing methods are unstable and vulnerable.

Figure 2 compares the use of different base metrics V: AvgRel
(average relevance, the default), nDCG, DCG, Expected Reciprocal
Rank (ERR) [6, 7], Rank Biased Precision (RBP) on p = 0.8 [30], and
Precision@k. For Precision@k, we binarize the relevance labels
via threshold (relmax + relmin)/2. We compare methods on naive-
relative VRisk (AVgsk) with f = 0.10, standard metric (AVyq), and
IW-metric (AViw), where Naive is at 100%.

While VRisker has a (1 — 1/e) guarantee for modular base met-
rics (e.g., AvgRel and Precision@k), we observe that VRisker is
about 20-40% more robust than naive on other non-modular base
metrics as well. Furthermore, VRisker only decreases the standard
performance (Viq) by about 0-10%.

Other diversification methods are barely more robust, or even
less robust, than the naive baseline. As we have argued in Section 3.4,
IW-based diversification methods (i.e., IW-Greedy and xQuAD) are
often very similar to the naive baseline, even when the base metrics
are not linear. Interestingly, on base metric nDCG, IW-Greedy and
the Naive algorithm behave exactly the same on all experimented

“#Note that we cannot compare with query-level robustness methods [18, 50], as they
do not take the average on all queries, so cannot be compared on the same scale.

settings and queries, despite nDCG not being linear (see Eq. (6)).
This is because the greedy marginal at each rank reduces to sorting
documents by expected gain under intent weights.

Q: How does the risk level, j, affect the performance?
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Figure 3: VRisk/VRisker’s pessimism is controllable via f. The
plots show results on VRisk and V4 (= Viw).

A: As we make evaluation more pessimistic (smaller f), average
performance decreases, demonstrating the tunability of VRisk &
VRisker.

Figure 3 shows the performance of different methods when we
vary the pessimism, . Recall that a smaller f focuses on a smaller
worst-case tail of intents. The results demonstrate a clear trade-off
between standard performance (i.e., Vitq / Viw) and VRisk, which
is a practical property discussed in Section 4.1. For example, when
B = 0.05, VRisker has about 20-30% less worst-case loss, while
sacrificing about 3-5% in standard performance. In contrast, when
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B = 0.8, VRisker reduces risk by about 2-3%, while having lost
almost nothing in terms of the standard performance. When the
platform should prioritize robustness over standard performance,
B should be tuned lower.

Q: How does ranking length affect performance?

—O— VRisker =0+t xQUAD MMR —A—: |W-Greedy =-F= Naive
NTCIR INTENT-2 TREC Web 12 MovielLens
~140% 140% 140%
2
@ 120% 120% 120%
3
S 100% B vl i i ) 100% @-—'—W—ﬁ-@-——@-——g 100% g——@-——--ﬁ-—@——@
S
3 8% o—0—0—0 o 80% | e O——O——O——0| 8% o
5 10 15 20 2 5 15 20 2 5 0 15 20 25
—~140% 140% 140%
2
D 120% 120% 120%

b

p]

AV,
=
<
=
@
g
S
@
8

5 0 15 2 25 5 10 15 20 25 5 10 15 20 25
Length of Ranking (k) Length of Ranking (k) Length of Ranking (k)

Figure 4: VRisker is robust to ranking length.

A: The average performance of VRisker improves as the ranking
length increases, while keeping consistent robustness.

Figure 4 compares the performance on different ranking lengths
on the three datasets. VRisker minimizes the worst f-fraction
loss consistently compared to the alternatives, with a 20-30% de-
crease. We also observe that in terms of the standard performance
(Vsta/Vaw ), VRisker performs better as the ranking is longer. In the
best case, in INTENT-2 k = 25, we observe 33% reduction in VRisk
while sacrificing only 2% in standard performance.

Q: Do we need perfectly accurate intent probabilities?
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Figure 5: The results are consistent when intent probabilities
with noise added. VRisk and Vg4 shown with raw values.

A: Preferable, but VRisker degrades more gracefully under noise.

Figure 5 plots the performance of diversification methods on
various noise levels. For each intent probability, we perturb each
probability as Pr(c | q) « Pr(c | q) + ., with e, ~ N(0,0?).
We then clip to [0, 1] and renormalize across intents. 2 controls
the noise level, where the larger the value, the more noise when
running the algorithms. We then evaluate using the true intent
probabilities.

We observe that the VRisk increases for all methods, meaning
less robustness. This is predictable since noisy intent probabilities
trigger noise in both raw relevance calculation and IW metric cal-
culation. Yet, VRisker maintains the lowest risk no matter the noise.
Additionally, we observe that in terms of the standard performance,
VRisker performs comparatively better as more noise is injected. At
o2 = 0.5, VRisker performs the best on all datasets. This is counter-
intuitive, but we hypothesize that this is because VRisker satisfies
the main intents even with low predicted intent probabilities.

Q: How optimal is VRisker?

VRisk performance (! better)
0.2 0.6

nDCG-Risk performance (! better)
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Figure 6: VRisker is near optimal. Values are averaged over
all three datasets. Results on other bases are in Figure 10.

A: VRisker is nearly optimal for various base metrics.

Figure 6 shows the comparison of VRisker against the optimal
performance, averaged over all three datasets. Here, Optimal is
computed exactly per query by solving the VRisk objective as a
MILP (PuLP + CBC solver). We show results tested on VRisk (i.e.,
base metric is average relevance) and nDCG, but we show results
on other base metrics in Appendix B.2. As discussed in Section 5.1,
VRisker is (1 — 1/e) optimal when the base metric is modular (left-
hand chart). As discussed in Section 5.2, for non-modular bases
VRisker is not merely a heuristic. As a result, we observe that
VRisker is near optimal in all experimented settings, reassuring the
robustness of the approach.

Q: How does target level Vi, affect the evaluation?
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Figure 7: VRisker works on various baseline target levels, and
the optimality of it is a tunable parameter for adjusting safety.

Results shown in raw values.

A: VRisk/VRisker works on various baseline target levels, and target
optimality provides a knob to trade off robustness and utility.



In our framework, Vg (g, c) can be set to the oracle value or
any baseline system. The latter is common in prior IR robustness
literature [18, 50], but is now applied within a query.

We test how changing the target level (i.e., baseline system)
changes the evaluation and performance. We do this by testing
on different optimality of Vigt, where a smaller value means less
optimal. For example, if the optimality is 0.2, this means 20% of the
oracle

Vigt(g. ¢) =0.2 % max V(R | g.0). (18)
s

If VRisk=0.0 at target optimality 0.2, this implies that every intent
attains at least 20% of its per-intent oracle value.

From Figure 7, we observe that VRisk is smaller as the target
level is less optimal. This is simply because the target level is more
achievable, resulting in lower loss. At optimality 0.2, we observe
that VRisker achieves VRisk=0.0, where all intents satisfy at least
20% of the oracle value. Once perfect VRisk is achieved, VRisker
could focus solely on raising the standard performance, because the
IW tie-break takes over (see Algorithm 1). This can be observed in
the bottom figures, where VRisker achieves near-optimal or optimal
standard performance at 0.2. Moreover, in the Web’12 and Movie-
Lens datasets, VRisker achieves perfect VRisk and near-optimal
standard performance at 0.4 target optimality as well.

This is a clear and interesting trade-off. Lowering the target opti-
mality can assure minimal satisfaction for all intents and also raise
the standard performance. On the other hand, higher target optimal-
ity makes VRisker strictly safer and makes VRisk more pessimistic.
Lastly, another interesting property is that when the target level
is the oracle, minimization of loss is exactly the maximization of
value. This property is especially relevant in production scenarios
where service-level objectives are framed in terms of minimum
per-intent quality guarantees.

By tuning Vig (and f), practitioners can directly express and en-
force these guarantees while preserving flexibility for the remainder
of the ranking.

Q: How fast is VRisker?
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Figure 8: Average runtime on MovieLens 32M (ms/query).
Per-query candidate document size is 71,933.

A: Runtime is comparable to standard diversification methods.
Figure 8 reports per-query runtime® to produce a top-10 ranking
on MovieLens 32M (per-query candidate set size is n = 71, 933). We

SMacBook Pro (M2, 2022, 16 GB), single-threaded NumPy/BLAS.

Rikiya Takehi, Fernando Diaz, and Tetsuya Sakai

compare with three additional baseline methods: IA-SELECT [1],
FA’IR [57], and Calibrated Recommendations (CR) [41] (details of
these methods are in Appendix B.4).

VRisker achieves 7.84 ms/query, which is within 1% of xQuAD,
and faster than IA-SELECT and Calibrated Recommendation (CR).
As expected, greedy diversifiers incur overhead relative to Naive, a
simple expected-relevance sort, but the absolute latencies remain
very small. These results indicate that VRisker matches the runtime
profile of standard greedy diversifiers while delivering its robust-
ness benefits. The complexity of VRisker is shown mathematically
in Section 5.

Q: Do tie-breakers matter?
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VRisk Performance (! better)

Naive Baseline

Il

INTENT-2 Web'12 MovielLens

Standard Performance: (1 better)
Naive Baseline

°
©

371> 0.89 0.90

°
@

AVrisk (4 better)

AVgy (T better)

INTENT-2 Web'12 MovielLens

Figure 9: Tie-breaking ablation for VRisker.

A: IW tie-breaker improves both robustness and utility.

When running VRisker, a tie occurs when multiple candidates
yield identical VRisk decreases at a position. When there is a tie,
VRisker picks the document that maximizes the IW metric (see
Algorithm 1). Figure 9 compares the performance of VRisker with
the IW tie-break versus a random tie-break. We observe that the
IW tie-breaker reduced tail risk by 7-14% while improving average
utility by 4-9% across INTENT-2, TREC Web’12, and MovieLens.
This is consistent with our objective: once the incremental risk
reduction is saturated at a rank, maximizing IW recovers the largest
utility without weakening the tail guarantee.

Q: Are existing diversification algorithms robust?

A: Generally, no.

In most experimental settings (Figures 3, 4, 5, 6, 7), existing di-
versification algorithms are no more robust than the naive ranking.
This is because the optimization of IW-metrics is identical to the
optimization of the standard metrics, as discussed in Section 3.4.
In Figure 2, we observe that while some (non-linear) base metrics
result in less risk, it is not consistent between datasets, and even
in the best case, the risk is larger than VRisker. We observe, as
Chapelle et al. [6] remark, that IW-Greedy and xQuAD on ERR
are fairly robust compared to the other metrics. Thus, if you really
need to use an IW-based diversification, we suggest using it with
ERR. However, in general, we recommend using VRisker, a tunable,
intuitive, baseline-relative, and most importantly robust method.

The appendix provides all results on raw values (i.e., not nor-
malized values) with three additional baseline methods. Figure 6 is
reported on all base metrics as well. Appendix B.3 also sweeps the
weights of the prior methods to show that the observed results and
discussions are not weight-dependent. The code to reproduce the
results is provided in https://github.com/RikiyaT/VRisk.
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7 Limitations

A key limitation, that is shared with prior intent-aware diversifica-
tion work [1, 9,37, 38, 52], is the need to estimate intent probabilities
Pr(c | ). While recent progress with LLMs makes intent discovery
and labeling increasingly tractable [39, 43], such estimates can be
biased and typically require calibration against logs or human judg-
ments. Encouragingly, our noise study (Figure 5) shows that VRisk
remains comparatively robust under perturbed intent distributions.
Our formulation and prior work [1, 9, 37, 38, 52] also assume
mutually exclusive intents per query, which simplifies analysis but
may not capture overlapping or hierarchical intents. In addition,
VRisk’s behavior depends on two policy parameters: the target level
Vigt (g, ¢) and the risk level . We study both empirically (Fig. 7,
Fig. 3), but different applications may prefer different settings.

8 Conclusion

This paper reframes diversification as within-query risk minimiza-
tion. First, we showed mathematically and empirically that the
most common diversification metrics favor majority intents just
like standard metrics, prioritizing vulnerable rankings. To address
this problem, we introduced VRisk, a CVaR-style, f-tunable metric
that quantifies tail risk. VRisk is intuitive and has various properties
that meet practitioner needs. Minimization of VRisk explicitly min-
imizes the chances of a user failing a search session. To minimize
VRisk efficiently, we propose VRisker, a greedy optimizer with a
(1—1/e) guarantee for modular base metrics and a data-dependent
bound for non-modular bases. Empirically, across INTENT-2, TREC
Web’12, and MovieLens 32M, VRisker reduced tail risk by up to 33%
with only ~ 2% loss in average utility, while classic diversification
often matches Naive ranker in robustness.

For future work, we plan to learn intents jointly, extend to
session-level objectives, and integrate the idea of robustness in
generative texts like question answering.

Ethical Considerations

This work adheres to established ethical standards for research. All
evaluations were performed on publicly available datasets contain-
ing no personally identifiable information. The proposed methods
are intended to enhance user experience by improving diversity
and coverage in search and recommendation results.
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A  Proofs

A.1 Proof of Proposition 2: NP-hardness

Proor. We reduce Weighted Max-k-Cover to VRisk minimiza-
tion (with k part of the input).°

Given ground set U, weights w : U — Ry, family {S;,...,S,} C
2, and budget k, build a single-query instance: intents C(q) = U
with

Pr(u|q) = Wv(;l), W = Z w(u).
uelU

Create one document d; per set S; and set binary relevance
rel(dj | qu) =1[u € S;].
Use the modular base metric and the target Vigi(q,u) = 1/k; fix

p=1
For any length-k ranking R,

VR] gu) = ¢ > 1lu € S(@)],

deR

£(R, ¢, u) = max {0, % - V(R| q,u)} = % 1 [u ¢ US(d)] .

deR

Thus

Veisk(R | g;1) = > Pr(u | g) £(R g, u)

1 1
=—|1-—= Z w(u) |.
k ( w ueU erS(d) )

Minimizing Wrisk (R | ¢; 1) is equivalent to maximizing the covered
weight in Weighted Max-k-Cover. Hence VRisk minimization is
NP-hard. ]

A.2 Proof of Theorem 1: (1 — 1/e)-Optimality
Guarantee

Proor oF THEOREM 1. Let

VRisk(R) = Via(R | ¢ ) = min[ £+ 5 3" Pr(er | @) (6(R)-0). .

For the discrete nonnegative losses £;(R), a minimizer {* always
lies in [0, max; #;(R)], hence {* > 0. For any fixed { > 0 define

Hy(R) = {+ % Dpla®R =),
pi =Pr(ci | q).

Then VRisk(R) = min; Hy (R).

SFor fixed constant k, brute force O(n¥) is polynomial.

Step 1. Fix { > 0 and intent i. Write C; := Vig(q,¢;) — ¢ 2 0 and
si(R) = Y gervi(d) with v;(d) :=rel(d | g,c;)/k = 0. For e ¢ R,

Al(g)(R’ e) = (Cl - Si(R))+ - (Cl - Si(R) - vi(e))+
= max{0, min{v;(e), C; — s;(R) }}.

Hence if R C S then 5;(R) < s;(S) and thus A" (R;e) > A\ (S;e).
Summing with nonnegative weights p;/f gives, for all R € S and
eé¢sS,

Hy(R) — Hy(RU{e}) = Hy(S) = Hy(SU {e}). ()
That is, the risk drop at fixed { has diminishing returns.

Step 2 (one-step greedy progress). Let R; be the greedy set after ¢
steps and let {; € argminy Hy (R;). For any e ¢ R;,

VRisk(R;) — VRisk(R; U {e}) > Hy,(R,) — Hz, (R U {e})

since VRisk(R;) = Hi, (R;) and VRisk(R, U {e}) < Hy, (R; U {e}).
Let O be an optimal k-set. Using (*) and averaging over e € O,

max[Hy, (R,) - Hy, (R U (e))] > %;O[H@(R[)—Hg,uetu{e})]
> %(H@(R,) - H, (R U 0)).

Monotonicity of Hy, in R gives Hy, (R; U O) < H,(O), and by
definition VRisk(O) = min; Hy (O) < Hg, (O). Therefore

Hy, (Rt)—Hgt (R:UO) > Hg, (Rt)_Hgf, (0) = VRisk(R;)—VRisk(O).

Combining the displays and taking greedy e;.1,
1
VRisk(R;) = VRisk(Ry+1) = 7 (VRisk(R,) = VRisk(0)).

Step 3. Let A; := VRisk(R;) — VRisk(O). Then

1
Apy1 < (1 - E) Ay,

SO

1 k
Ak < (1 - E) AO < e_le.

Equivalently,
1
VRisk(@) — VRisk(Rg) > (l - —) (VRisk(2) — VRisk(0)),
e

i.e., the greedy Ry captures at least (1 — 1/e) of the optimal risk
reduction. O

A.3 Proof of Theorem 2: NDCG-Risk
Approximation
PrOOF OF THEOREM 2. Let

F(R) = Wisk(2) — Wrisk(R) = A(R)

be the risk—reduction set function. F is monotone because adding a
document can only lower Vgjgk.
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Step 1: submodularity ratio. For any two prefixes A € B € D
and any document d ¢ B define the marginal gains
A(d | X) =F(XU{d}) - F(X), X e{AB}.

Write |[A| =7, |B| =t (r <t < k). With the NDCG discount vector
wy > -+ > wg, d is placed at position 7 + 1in AU {d} and ¢t + 1 in
B U {d}. For each intent ¢ the per-intent gain satisfies

Wr+19d,c

NDCG.(A U {d}) = NDCG.(A) = ———

(AU @) () = St

Wi+1 9d,c

NDCG,(BU {d}) = NDCG.(B) = ———,
(BU{d) o(B) = o

where g4, = 2rel(dla.c) _ 1 > 0, Because WRisk is a positive convex
combination of these per—intent gains clipped by a hinge at ¢,
the clipping can only reduce both numerators by the same amount.
Hence

A(d | B) > YL A(d | A)

Wr+1
> Yk A(d] A)
w1

Wk

k
i=1 Wi

——
=Y

\%

Al | A).

Thus the submodularity ratio [14] of F is lower-bounded by y.

Step 2: greedy approximation. For any monotone set function
with submodularity ratio y, the standard greedy algorithm attains
the guarantee

F(Ri) = (1- e ")F(R})
under a cardinality constraint k. Applying this to F = A proves
Theorem 2. O

B Additional Experiments and Results
B.1 Statistical Significance Testing

Following IR best practice, we treat the set of queries in each bench-
mark as a sample from a larger population and test the null hy-
pothesis that two systems have equal expected performance across
that population. For every query g we compute the paired dif-
ference d; = Ma(q) — Mp(q) where M is either our risk metric
Wrisk (Rk|g; B = 0.10) or the underlying expected-utility metric Vgq.
We then apply (i) a two-sided Wilcoxon signed-rank test and (ii) a
paired randomization test with B = 100,000 permutations.

Table 3: Paired significance tests at f§ = 0.10, k = 10.
Asterisks mark values that remain below a = 0.05 after
Holm-Bonferroni correction over all comparisons.

Wilcoxon p
vs XQUAD  vs Naive vs xQuAD

Perm.
Dataset Metric erm. p

vs Naive

Vaisk  1.1x107183° 18x1071% <1075 < 107%
INTENT-2 _11* —11* —5* —-5*
Via 12X 10 1.2 % 10 <10 <10
WEB Veisk  7.7%107¢  14x107% <107 1.0x 1075
Vaa  5.8x107% 58x107% <107%° < 107%
ML 32M VRisk  7.5%X 10797 9.6x107%" <1075 < 107%
Vaa 2.6%x1071° 14x107! <1077 < 107%
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Table 3 reports the resulting p-values. Asterisks mark values that
remain below @ = 0.05 after Holm—Bonferroni correction over all
comparisons.

B.2 Additional Results on Optimality

Figure 10 provides the full list of experiments on the optimality
of VRisker (extended version of Figure 6 in the main text). We ob-
serve that VRisker is nearly optimal on all metrics. We also observe
that the optimal performance, in return, lowers the standard per-
formance on all metrics. This demonstrates that VRisker is robust
while being strong in standard performance.

B.3 Sensitivity Analysis on Prior Methods

xQuAD, MMR, FA"IR, and CR all have a weight that balances be-
tween relevance and diversity/fairness/calibration. Although they
have different notations for weights, we generalize as Amethod in
our paper. Essentially, using the weight, they optimize below

(1 = Amethod) Vsta (d | 9 R) + AmethoaVx(d | q R).

Thus A=0 reduces to pure relevance (Naive/IW), and A=1 to the
pure diversity/fairness/calibration.

Figure 11 shows the sensitivity experiment on the same settings
as the main text.

Across NTCIR INTENT-2, TREC Web’12, and MovieLens, sweep-
ing A confirms a consistent pattern: (i) at A=1 all classical baselines
become diversity/calibration-only and suffer catastrophic drops in
both Viq (=Viw) and Vgisk, (ii) for A € [0, 0.8] they track Naive on
both risk and utility, offering little worst-case protection, and (iii)
VRisker dominates on Vg;sk ¢ While maintaining high Vyq.

This justifies the fixed A choice in the main text and shows that
the conclusions are not an artifact of particular hyperparameters.

B.4 Additional Results

In this appendix, we provide experiment results on the main text
but with more baselines and with the raw metric values if they are
normalized on the main text.

The additional baselines are:

IA-SELECT [1]. This method builds a ranking that minimizes
the chances that users will not click on any item in a ranking.
Since IA-SELECT works best on a cascade assumption with click
probabilities instead of relevance, we normalize the relevance scores
to [0, 1] when computing.

Calibrated Recommendation (CR) [41]. This method aims
to match the intent-probability proportions to the per-intent utility
proportions in the ranking. Acr is the weight which controls the
balance between relevance and calibration, and is set to 0.5.

FA*IR [57]. This method aims to fairly expose each group of
documents in the ranking. In our case, we target intent-probability
distribution as a fairness objective, trading off between relevance
and fairness via the weight Apa'r (set to 0.5).

Figures 12, 13, 14, 15, and 16 report the additional experimental
results Figures 2, 3, 4, 5, and 7 in the main text respectively.

We observe that the additional baselines are not robust or equal
as robust as the naive baseline. This is mainly because the settings
and the objectives of the methods are conceptually different from
our objective. IA-SELECT only functions under the use of click
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Risk vs. Performance Comparison
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Figure 10: Optimality of VRisker. For each base metric, the left shows VRisk (lower is better) and the right shows Viw (higher is
better). Figure 6 of the main text.

—O— VRisker IA-Select =0ttt xXQUAD  —V- MMR  —Z4—: |W-Greedy —<1F- Naive O FAYIR  -=f= CR
NTCIR INTENT-2 TREC Web '12 MovielLens

o
o

Vstg (1 better)
o °
w S

0.2

Figure 11: A-sensitivity (xQuAD, MMR, FA'IR, CR) on three datasets. As 1 — 1 (pure diversity/calibration), all classical baselines
collapse in V4 and do not provide meaningful tail-risk reduction; for intermediate A they behave similarly to Naive. In contrast,
VRisker (no 1) remains consistently robust with small utility loss.

probabilities under the cascade user assumption. FA'IR and CR respectively focus on fairness and calibration, which are different
from diversity and robustness.
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Figure 12: Risk and utility across base metrics. AVg;si (lower is better) and AVyq/AViw (higher is better) for AvgRel, nDCG, DCG,
ERR, RBP, and Prec@k on INTENT-2, WEB’12, and MovieLens; Naive = 100%. Figure 2 of the main text.
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Figure 13: Effect of f§ (pessimism level). As f decreases, VRisker reduces tail loss more aggressively with a manageable drop in

average utility. Figure 3 of the main text.
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Figure 14: Effect of ranking length k. VRisker’s utility improves as k grows while maintaining substantially lower tail risk than
baselines. Figure 4 of the main text.
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Figure 15: Noise in intent probabilities. VRisker remains most robust under Gaussian noise added to Pr(c|q). Figure 5 of the

main text.



Rikiya Takehi, Fernando Diaz, and Tetsuya Sakai

—O— VRisker IA-Select  **+{** xQUAD = V= MMR —/A—" |W-Greedy =1k = Naive O FAYIR === CR
NTCIR INTENT-2 TREC Web '12 035 MovielLens
10 0.30 .
0.25 O
0.20

0.15

0.10

0.05

0.00

Vista (1 better)

0.05

0.00

04 05 06 07 08 09 1.0

Optimality of Target Vgt

02 03

04 05 06 07 08 09 10

Optimality of Target Vig¢

02 03

04 05 06 07 08 09 10

Optimality of Target Vig¢

02 03

Figure 16: Target optimality sweep. Lower target optimality yields smaller losses and lets VRisker focus on utility once Vg;sk ~ 0.

Figure 7 of the main text.
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