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Abstract
Users tend to remember failures of a search session more than its

many successes. This observation has led to work on search ro-

bustness, where systems are penalized if they perform very poorly

on some queries. However, this principle of robustness has been

overlooked within a single query. An ambiguous or underspec-

ified query (e.g., “jaguar”) can have several user intents, where

popular intents often dominate the ranking, leaving users with

minority intents unsatisfied. Although the diversification literature

has long recognized this issue, existing metrics only model the aver-
age relevance across intents and provide no robustness guarantees.

More surprisingly, we show theoretically and empirically that many

well-known diversification algorithms are no more robust than a

naive, non-diversified algorithm. To address this critical gap, we

propose to frame diversification as a risk-minimization problem.

We introduce VRisk, which measures the expected risk faced by

the least-served fraction of intents in a query. Optimizing VRisk

produces a robust ranking, reducing the likelihood of poor user ex-

periences. We then propose VRisker, a fast greedy re-ranker with

provable approximation guarantees. Finally, experiments on NTCIR

INTENT-2, TREC Web 2012, and MovieLens show the vulnerability

of existing methods. VRisker reduces worst-case intent failures by

up to 33% with a minimal 2% drop in average performance.

Code provided in https://github.com/RikiyaT/VRisk.

1 Introduction
Users remember the worst search sessions far more than the aver-

age ones [12, 24, 26, 50, 56]. This insight has motivated extensive

research on search robustness [12, 15, 17, 18, 33, 47, 50]. These

prior works typically consider the downside risk, with the goal of

minimizing the chances that users are unsatisfied with the search

results. The fundamental principle is that search systems that per-

form poorly on some queries should be penalized, even if they

perform well on average. However, these studies have only focused

on the risks of rankings at the query level and have not considered

the potential downside risks within a query.
This limitation becomes particularly problematic when queries

are ambiguous or underspecified, leading to multiple possible user

intents [10]. Consider a search for “jaguar.” While many users may

seek information about the car brand, those interested in the ani-

mal may find search results entirely dominated by the car brand.

Naive ranking algorithms, designed to maximize a single relevance

score, naturally produce such unbalanced results, where users with

minority intents end up failing their search sessions.

The intent-based search diversification literature has long at-

tempted to address this robustness-within-query challenge, aiming

to generate a ranking to cover multiple intents [1, 9, 13, 32, 37]. Yet,

although preventing intent failures is a core motivation for diversity,
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existing approaches typically measure the average relevance across

intents rather than explicitly addressing the worst-case outcomes.

Importantly, we show mathematically that, in many cases, the fam-

ily of intent-weighted diversity metrics [1, 9, 37] offers no protection
in terms of robustness. For example, in the toy example of Table 1,

we show that NDCG-IA [1] favors a ranking that completely ig-

nores 49% of user intents. Consequently, as our experiments reveal,

many existing diversification algorithms are no more robust than a

naive, non-diversified ranking.

In light of this, we convert diversification into a principled risk-

minimization problem. We argue that a search result must be robust

within a query, in a way that minimizes the chances that users are

unsatisfied. Specifically, we introduce the first framework for intent-

aware risk minimization within a ranking, providing an evaluation

metric VRisk. Drawing inspiration from finance, VRisk analyzes

risk by adapting Conditional Value at Risk (CVaR), evaluating the

expected relevance loss for the least-addressed fraction of user in-

tents within each query. VRisk answers the question: “How bad is
the ranking for the worst 𝛽-fraction of intents.” VRisk can be baseline-
free, measuring absolute risk, but can also be computed relative to

a baseline system, following the common practice in existing IR

risk metrics like URisk [50] and GeoRisk [18]. VRisk is tunable and

intuitive, giving both risk and guarantee in its evaluation. Addition-

ally, we offer an efficient optimization algorithm called VRisker
with a strong optimality guarantee, making our approach practical

and theoretically robust for real-world problems.

Finally, we demonstrate that the robustness problem is miti-

gated through experiments on NTCIR INTENT-2 [35] and TREC

Web 2012 [11] datasets. Additionally, this problem extends beyond

search, as intent-based diversity has become a key concern in mod-

ern recommender systems as well [5, 23, 27, 42, 46, 52, 53]. Thus, we

also test on the MovieLens 32M [21] to verify that our risk-aware

framework addresses the same issues in recommender systems. Our

results show that the algorithm reduces worst-case intent failures

by up to 33% while sacrificing as little as 2% in average performance.

Our contributions are summarized as follows:

• We present the first framework for intent-aware risk mini-

mization in search, introducing a novel CVaR-based metric

for both absolute and baseline-relative risk assessment, for-

mally bridging diversification and robustness.

• We demonstrate mathematically and empirically that many

mainstream diversification methods are fundamentally not

robust, often performing no better than a naive baseline.

• We develop an efficient greedy algorithm with a strong

approximation guarantee.

• We demonstrate through extensive experiments on three

datasets that our algorithm consistently reduces worst-case

intent failures by up to 33% at the cost of only a 2% drop in

average relevance.
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2 Related Work
2.1 Risk-Aware Search and Recommendation
Most influential works on retrieval robustness treat the entire query,

rather than individual intents, as the unit of risk [12, 17, 33, 50, 55].

The proposed risk-aware frameworks generally penalize systems

that perform poorly on some queries, instead of looking at the

average performance. By favoring such robust algorithms, they

minimize the probability of users being unsatisfied. However, while

considering risks at the query level, they have not considered the

risk that intents may be poorly addressed within a single query.

Portfolio-theory-based approaches [45, 49] assess the variance

of a single ranking by treating each document’s relevance score as

the ambiguous factor. This perspective differs fundamentally from

ours, as we focus on ambiguity at the intent level rather than at the

document level.

Other studies consider risks in decision-making, search, and

recommendation [19, 20, 22, 25, 44], but model the random variable

at the user, session, or policy levels. Our method complements

these approaches by applying the tail-risk logic directly to the

diversification step, guaranteeing that even the users with minority

intents in the query are satisfied.

2.2 Diversification in Rankings
The naive ranking algorithm, which ranks documents in the order

of relevance, often only shows the majority intents and ignores the

minority intents of a user. The literature of diversification in search

has long aimed at providing reasonable satisfaction across intent

groups [1, 9, 32, 37]. However, despite such clear connections with

the motivation for robustness, most diversification frameworks

generally consider the average rather than risks or guarantees. In

fact, we find that IA metrics [1] and D-measure [37], two of the

most common diversification metrics, provide identical results to a

naive, non-diversified metric in many cases. Since many diversifi-

cation studies are built under their logic, we show empirically that

many diversification algorithms perform very poorly in terms of

robustness.

Some studies provide diversification methods and metrics aim-

ing to minimize the probability of a user not clicking on any doc-

ument [1, 32, 52], which is fundamentally similar to our goal of

robustness. However, typically assume a cascade behavior assump-

tion and associate only click probabilities, which are rare cases

in practice. As we will show in the experiments, these methods

perform poorly with graded relevance (e.g., nDCG) and explicit

ratings. Some other studies consider the coverage of information

without explicitly considering intents, thus conceptually different

from what we aim [4, 31].

Fairness in rankings is also a related field that ensures that each

candidate group gets a fair amount of exposure in a ranking [36, 40].

It does not ensure that the user is given a diversity of exposure,

thus conceptually different from our goal.

3 Problem Formulation
3.1 Preliminaries
We consider the evaluation of a single top-𝑘 ranking, denoted 𝑅𝑘 .

Let 𝑞 denote a query with intent set C(𝑞) = {𝑐1, . . . , 𝑐𝑚}, where

each intent 𝑐𝑖 represents a distinct information need associated

with 𝑞.

We denote Pr(𝑐 | 𝑞) as the probability that a user issuing query 𝑞
has intent 𝑐 . Following common prior work [1, 8, 32, 37], we assume

the intents are mutually exclusive, i.e.,

∑
𝑐∈C(𝑞) Pr(𝑐 | 𝑞) = 1.

Let rel(𝑑 | 𝑞, 𝑐) ∈ [0, relmax] be the relevance of document𝑑 ∈ D
for query 𝑞 given a user intent 𝑐 . We suppose that rel(𝑑 | 𝑞, 𝑐)
and Pr(𝑐 | 𝑞) are known or estimated beforehand, following the

common setting in prior work on intent-based diversity [1, 9, 10,

37, 46, 52]. Their estimation is outside the scope of this work.

Naturally, the raw relevance of the document (that ignores in-

tents) is calculated by the expected relevance

rel(𝑑 | 𝑞) = E
𝑐∼Pr(𝑐 |𝑞)

[rel(𝑑 | 𝑞, 𝑐)] (1)

=
∑︁

𝑐∈C(𝑞)
Pr(𝑐 | 𝑞)rel(𝑑 | 𝑞, 𝑐) .

This formulation is widely adopted in prior work [3, 6, 28, 37, 51, 54].

3.2 Standard Metric
To measure the value of a ranking, we take the average relevance

𝑉std (𝑅𝑘 | 𝑞) =
1

𝑘

∑︁
𝑑∈𝑅𝑘

rel(𝑑 | 𝑞) . (2)

While we use average relevance as a default metric throughout the

main text, the base metric 𝑉 can be replaced with other standard

metrics (e.g., nDCG, DCG, ERR, Precision@k, RBP), which we will

also discuss in our experiments.

The optimal ranking for Eq. (2) and most standard metrics like

nDCGwould be the naive ranking algorithm that selects documents

in the descending order of relevance

Naive(𝑞) = argsort

𝑑

rel(𝑑 | 𝑞) . (3)

However, since the relevance of a document is heavily depen-

dent on the intent probability (see Eq. (1)), such naive rankings

may contain only documents of the majority intents, and some

minority intents may be completely ignored. This is not robust, as

it may result in a poor search session when the user had a minority

intent [1, 9, 37, 41].

3.3 Intent-Weighted Metric
We now present another common evaluation method of a ranking

given some user intents. We denote the value of a ranking given
intent 𝑐 as the average relevance

𝑉 (𝑅𝑘 | 𝑞, 𝑐) =
1

𝑘

∑︁
𝑑∈𝑅𝑘

rel(𝑑 | 𝑞, 𝑐) . (4)

Similar to Eq. (2), this denotes the average relevance of a ranking,

but for a specific user intent 𝑐 .

Given this per-intent value𝑉 (𝑅𝑘 | 𝑞, 𝑐), another straightforward
evaluation method of the ranking would be to compute the intent-

weighted average (IW metric), denoted

𝑉IW (𝑅𝑘 | 𝑞) =
∑︁

𝑐∈C(𝑞)
Pr(𝑐 | 𝑞)𝑉 (𝑅𝑘 | 𝑞, 𝑐) . (5)
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Table 1: Toy example of hownDCGIW (= NDCG-IA [1]) can ne-
glect diversification in a top-2 ranking. (a) is the setting, and
(b) shows the evaluation scores of each ranking. Although
the intent probability of 𝑐1 is only 0.02 more than 𝑐2, nDCGIW
favors a non-diversified ranking. As a result, 49% of the users
can be unsatisfied with the ranking.

(a) Setting.

𝑐1 𝑐2

Pr

(
𝑐 | 𝑞

)
0.51 0.49

rel(𝑑1 | 𝑞, 𝑐) 1 0

rel(𝑑2 | 𝑞, 𝑐) 1 0

rel(𝑑3 | 𝑞, 𝑐) 0 1

rel(𝑑4 | 𝑞, 𝑐) 0 1

(b) Evaluation scores.

𝑅𝑘=2 nDCGIW nDCGstd

[𝑑1, 𝑑2] 0.600 1.000
[𝑑1, 𝑑3] 0.502 0.871

[𝑑3, 𝑑4] 0.400 0.667

This evaluationmethod also demonstrates the family of “IA” metrics

by Agrawal et al. [1] (e.g., NDCG-IA, MRR-IA), which are diversifi-

cation metrics aiming to value minority intents more. For example,

if the base metric 𝑉 is replaced with nDCG (i.e., nDCGIW), this

matches NDCG-IA [1]. This is arguably the most common metric

for diversity, as the same intent-weighted paradigm also under-

lies widely used diversification metrics and algorithms such as

xQuAD [38], ERR-IA [6], D-measure [37], and 𝛼-nDCG [9].

3.4 IW Metrics are Surprisingly not Robust
While 𝑉IW (𝑅𝑘 | 𝑞) builds the ground of most diversification meth-

ods, we find that, surprisingly, when the base metric𝑉 is linear (e.g.,

DCG, average relevance, Precision@k), the intent-weighted metric

in Eq. (5) is identical to the standard metric in Eq. (2). Formally,

using average relevance as the base metric 𝑉 , we have

𝑉IW (𝑅𝑘 | 𝑞) =
∑︁

𝑐∈C(𝑞)
Pr(𝑐 | 𝑞) ©­« 1𝑘

∑︁
𝑑∈𝑅𝑘

rel(𝑑 | 𝑞, 𝑐)ª®¬
=

1

𝑘

∑︁
𝑑∈𝑅𝑘

©­«
∑︁

𝑐∈C(𝑞)
Pr(𝑐 | 𝑞) rel(𝑑 | 𝑞, 𝑐)ª®¬ =𝑉std (𝑅𝑘 | 𝑞) .

(6)

This means an algorithm that maximizes 𝑉IW will favour the ma-

jority intent just as the 𝑉std would. Thus, for linear base met-
rics 𝑽 , the intent-weighted metric offers no protection to mi-
nority intents. Interestingly, D-measure [37], another common

diversification method, also reduces to the standard metric. Conse-

quently, the spectrum of intent-based diversification metrics and

algorithms [1, 9, 37, 38] are ineffective at providing diversity or robust-
ness with linear base metrics like DCG, Precision@k, and average

relevance.

For non-linear basemetrics like nDCG, Expected Reciprocal Rank

(ERR) [7] and Rank Biased Precision (RBP) [30], the equality like

Eq. (6) no longer holds. Yet, these metrics can still fail to measure

the diversity of a ranking. Table 1 shows a toy example of how

nDCGIW favors a ranking dominated by one intent, despite the two

intent probabilities being almost equal. This is not at all robust, as

49% of the intents are completely ignored.
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Figure 1: Illustration of VRisk. Bar height shows per-intent
loss ℓ (𝑅𝑘 , 𝑞, 𝑐) and the bar width shows the intent probability
Pr

(
𝑐 |𝑞

)
. 5 intents are sorted by loss (worst → best). VRisk

takes the average of , the worst-𝛽 intent probability mass.

Furthermore, empirical results in Section 6 reveal that intent-

weighted diversification algorithms for such non-linear metrics are

also barely more robust than naive algorithms.

4 Risk-Sensitive Metric: VRisk
To address the limitation that existing diversification methods fail

to account for robustness, we convert diversification to a risk-

minimization problem. Specifically, we propose a metric, VRisk,
that measures the expected loss of the least-addressed 𝛽-fraction of

intents, bringing the Conditional Value at Risk (CVaR) concept into

IR. VRisk is intuitive, baseline-relative, and easy to tune.

For each possible intent, we define a loss function as the loss of

intent-level value against the target level

ℓ (𝑅𝑘 , 𝑞, 𝑐) =
[
𝑉tgt (𝑞, 𝑐) −𝑉 (𝑅𝑘 | 𝑞, 𝑐)

]
+ , (7)

where [·]+ =max(0, ·) and𝑉tgt (𝑞, 𝑐) is a target level for performance

on intent 𝑐 .𝑉tgt (𝑞, 𝑐) is a baseline function capturing the satisfaction
threshold for intent 𝑐 . Unless stated otherwise, we use the oracle
target, which is the best possible ranking for the intent

𝑉tgt (𝑞, 𝑐) =max

𝑅′
𝑘

𝑉 (𝑅′
𝑘
| 𝑞, 𝑐) . (8)

By setting loss against the oracle, Eq. (7) answers the question:

“How well does the ranking satisfy the intent compared to the

ideal case?” We use loss instead of the raw value, as it is fair even

when there exist more relevant documents for one intent than the

others. Note, however, that when the target level is set to the oracle,

the minimization of loss matches exactly the maximization of raw

value.

Following previous query-level risk studies [18, 50], 𝑉tgt (𝑞, 𝑐)
may also be a value of any baseline algorithm or some heuristic

threshold that we want to ensure, which we investigate in Section 6.

Now, to derive VRisk, let 𝜁 be the 𝛽-fraction of the loss distribu-

tion, i.e. Pr

(
ℓ (𝑅𝑘 , 𝑞, 𝑐) > 𝜁

)
≤ 𝛽. Smaller 𝛽 places more weight on

rarer, worse-served intents. Then, VRisk is the expected loss of the

worst 𝛽-fraction of intents, denoted

𝑉Risk (𝑅𝑘 | 𝑞; 𝛽) = E
[
ℓ (𝑅𝑘 , 𝑞, 𝑐)

�� ℓ (𝑅𝑘 , 𝑞, 𝑐) ≥ 𝜁
]
. (9)
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Smaller VRisk is more robust because it reduces tail loss. Figure 1

illustrates VRisk when 𝛽 = 0.20.

Since Eq. (9) is difficult to optimize directly, following the Rockafellar-

Uryasev formulation [34], we express our VRisk metric as

𝑉Risk (𝑅𝑘 | 𝑞; 𝛽) =min

𝜁 ∈R

𝜁 +
1

𝛽

∑︁
𝑐∈C(𝑞)

Pr(𝑐 | 𝑞) [ℓ (𝑅𝑘 , 𝑞, 𝑐) − 𝜁 ]+
 .
(10)

VRisk can tell us both the risk of the ranking and the guarantees,

as explained in the example below.

Example 1. If 𝑉Risk (𝑅𝑘 | 𝑞; 𝛽) = 1.0 at 𝛽 = 0.05, we obtain

• Risk: The worst 5% of intents have an expected loss of 1.0,
• Guarantee1: 95% of the intents have the loss always smaller

than 1.0.

4.1 Property of VRisk
Our VRisk metric is controllable and generalizable. Specifically,

𝛽 ∈ (0, 1] is a tunable parameter that controls which worst fractions

we would like to care about. An interesting property is described

following proposition.

Proposition 1. When 𝛽 = 1, VRisk reduces to the expected loss

𝑉Risk (𝑅𝑘 | 𝑞; 𝛽 = 1) =
∑︁

𝑐∈C(𝑞)
Pr(𝑐 | 𝑞) · ℓ (𝑅𝑘 , 𝑞, 𝑐) . (11)

Thus, our framework generalizes the average intent-weighted

optimization, while enabling control of tail risk via 𝛽 . Specifically,

a smaller 𝛽 means a strictly safer system.

In short, VRisk converts diversification into an intuitive risk-
minimization problem driven by a single, intuitive parameter 𝛽 .

Using VRisk, we are able to explicitly measure the robustness of a

ranking, unlike existing metrics that measure the average.

Why not minimax? The minimax criterion, which maximizes the

value of the single worst–served case, is typically more common in

the IR literature [15, 16, 29, 48]. In our case, minimax solves

min

𝑅𝑘

max

𝑐∈C(𝑞)
ℓ (𝑅𝑘 , 𝑞, 𝑐). (12)

In Figure 1, the minimax task would be to minimize the loss of only

the left-most intent (i.e., intent with the most loss).

However, minimax is not suited for our problem, as it is not

tunable. Minimax must optimize for the worst intent, even if that

intent only occurs at a 0.0001% chance. In reality, we should not

lower the average utility just to fulfill such intent. In contrast, VRisk

looks at the worst fraction of the intents, where 𝛽 controls the size

of the fraction, so it addresses a 0.0001% intent only if it lowers

fraction loss the most. Moreover, VRisk subsumes minimax as the

special case of 𝛽 → 0.

5 Optimization of VRisk: VRisker
The VRisk objective gives us an explicit target of minimizing tail
risk, but finding the global optimum is computationally intractable,

as shown in the following proposition.

1
Even better, 95% of the intents have loss ≤ 𝜁 ≤ 1.0

Algorithm 1 VRisker

Require: Query 𝑞, candidates D, length 𝑘 , risk level 𝛽

1: Ranking 𝑅 ← ∅
2: for each rank 𝑖 = 1, . . . , 𝑘 do
3: // select document that minimizes VRisk

4: 𝑑∗ ← argmin𝑑∈D\𝑅 𝑉Risk (𝑅 ∪ {𝑑} | 𝑞; 𝛽)
5: Tie-break by maximizing 𝑉IW (𝑅 ∪ {𝑑} | 𝑞)
6: // append document to rank 𝑖

7: 𝑅 ← 𝑅 ∪ {𝑑∗}
8: end for
9: return Ranking 𝑅

Proposition 2 (NP-hardness). For variable 𝑘 and any 𝛽 ∈ (0, 1],
minimizing VRisk

min

𝑅𝑘 ⊆D, |𝑅𝑘 |=𝑘
𝑉Risk (𝑅𝑘 | 𝑞; 𝛽)

is NP-hard. Proof in Appendix A.1.

Due to the NP-hardness of the optimization problem, we pro-

pose an efficient ranking algorithm called VRisk Efficient Ranker
(VRisker), shown in Algorithm 1. VRisker is a greedy algorithm

that picks documents iteratively from the top position. At each step,

it adds the document that most reduces VRisk. When there is a tie,

it adds the document that maximizes the IW metric 𝑉IW (𝑅 | 𝑞).
VRisker is practical in terms of complexity. Let𝑚 = |C(𝑞) | and

𝑛 = |D|. Each risk evaluation involves 𝑂 (𝑚) arithmetic operations.

The run time is𝑂 (𝑘2𝑛𝑚), but drops to𝑂 (𝑘𝑛𝑚) with incremental up-

dates, which is identical to the speed of prior greedy diversification

algorithms [1, 6, 38, 41]. Empirical comparison is in Figure 8.

5.1 Approximation Guarantee of VRisker
The VRisker algorithm has strong theoretical guarantees. When

the base metric 𝑉 (· | 𝑞, 𝑐) is modular (e.g., average relevance,

Precision@k), the per-intent loss ℓ (𝑅, 𝑞, 𝑐) is monotone non-increasing,

and the risk-reduction function

Φ(𝑅) =𝑉Risk (∅ | 𝑞; 𝛽) − 𝑉Risk (𝑅 | 𝑞; 𝛽) (13)

is monotone submodular.2 Given the submodularity, we are able to

provide an approximation guarantee on VRisker, in Theorem 1.

Theorem 1 ((1 −1/𝑒) Optimality Guarantee). For modular
base metric 𝑉 , let 𝑅★

𝑘
be the optimal length-𝑘 ranking. Then, VRisker

returns 𝑅𝑘 such that

Φ(𝑅𝑘 ) ≥
(
1 − 1

𝑒

)
Φ(𝑅★

𝑘
), (14)

i.e., it captures at least 63% of the optimal risk drop. Proof in Appen-
dix A.2.

5.2 Guarantee for Non-Modular Metrics
When the base metric 𝑉 is non-modular, such as nDCG, the risk-

reduction function Φ(𝑅) is no longer submodular, so Theorem 1

does not hold. However, we can establish a formal approximation

guarantee for VRisker using the concept of the submodularity ra-
tio [14]. A function has a submodularity ratio 𝛾 ∈ (0, 1] if the
2
Submodularity follows because (i) adding a document can only lower each hinge-loss

term, and (ii) the convex combination inside CVaR is linear in these losses.
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marginal gain of adding an element to a larger set is at least a

𝛾-fraction of the marginal gain of adding it to a smaller subset.

For example, for VRisk optimization with nDCG as the base

metric, we can show that the risk-reduction function Φ(𝑅) has a
data-independent submodularity ratio 𝛾 > 0. Building on Bian et al.

[2], we prove the following theorem.

Theorem 2 (nDCG-Risk Approximation). For any query 𝑞, risk
level 𝛽 , and cut-off 𝑘 , VRisker returns a ranking 𝑅𝑘 that satisfies

Φ(𝑅𝑘 ) ≥
(
1 − 𝑒−𝛾

)
Φ(𝑅★

𝑘
), (15)

where𝛾 ≥ 𝑤𝑘/
∑𝑘

𝑖=1𝑤𝑖 is the submodularity ratio, with𝑤𝑖 = 1/log
2
(1+

𝑖) being the nDCG discount at rank 𝑖 . Proof in Appendix A.3.

Theorem 2 provides a worst-case guarantee for VRisker’s per-

formance. The ratio 𝛾 depends only on the ranking depth 𝑘 , where

for typical depths such as 𝑘 = 5, 10, 20, the lower bound on 𝛾 is

0.15, 0.09, 0.05, respectively. While this theoretical bound is looser

than when 𝑉 is modular, we show that VRisker is not an arbi-

trary heuristic. We also examine the optimality of VRisker on non-

modular base metrics in Section 6.

To sum up, VRisker is a theoretically grounded and efficient

algorithm that explicitly minimizes the risks of a user receiving a

poor ranking.

6 Experiments
In this section, we extensively evaluate our metric and method by

comparing with other re-ranking approaches on NTCIR INTENT-

2 [35], TREC Web 2012 [11], and on MovieLens 32M datasets [21].

6.1 Experiment Setup
Datasets. NTCIR INTENT-2 and TRECWeb 2012 provide a list of

intents for each query, with their intent-specific graded relevance

rel(𝑑 | 𝑞, 𝑐). NTCIR INTENT-2 provides 5 relevance grades, and

TREC Web 2012 provides 6. While NTCIR INTENT-2 provides their

intent probabilities Pr(𝑐 | 𝑞), TREC Web does not provide intent

probabilities. However, following Clarke et al. [11], we let all intents

in the TREC Web datasets occur with equal probabilities.

To test generalization beyond search, we also evaluate on Movie-

Lens 32M [21], where intent-based diversity is of increasing in-

terest [5, 23, 27, 42, 46, 52, 53]. We treat each user as a query and

each genre as an intent. We select users with more than 200 ratings

to ensure sufficient per-user data. Otherwise, different re-ranking

algorithms can collapse to similar outputs under extreme sparsity.

Following Steck [41], we estimate Pr(𝑐 | 𝑞) from the user’s histor-

ical genre proportions and use explicit ratings as raw relevance

rel(𝑑 | 𝑞). For multi-genre items, we define per-intent relevance

via a Bayes-consistent allocation

rel(𝑑 | 𝑞, 𝑐) = 1[𝑐 ∈ 𝐶 (𝑑)] rel(𝑑 | 𝑞)∑
𝑐′∈𝐶 (𝑑 ) Pr(𝑐′ | 𝑞)

, (16)

where 𝐶 (𝑑) is the set of genre labels for 𝑑 and 1 is an indicator

function. This construction ensures Eq. (1). We adopt an evaluation-

only protocol, where no recommender is trained, so as to isolate the

effect of the re-ranking objective. Unobserved ratings are treated

as non-relevant for evaluation only.

Additional statistics of the datasets are summarized in Table 2.

Table 2: Statistics of the datasets. (Note that the #Queries
denote #Users in MovieLens.)

Dataset #Queries #Docs Avg. #Intents per Query

INTENT-2 (JP) [35] 95 5,085 6.1

TREC Web ’12 [11] 50 15,200 6.0

MovieLens 32M [21] 42,902 71,933 8.0

Experimental Parameters. We set 𝛽 = 0.10 as the default, meaning

that we focus on the average loss of the worst 10% of intents when

computing 𝑉Risk. We also provide experiments where we sweep 𝛽

to different values. The ranking length 𝑘 is also an experimental

parameter, with the default length𝑘 = 10. The baseline performance

𝑉tgt (𝑞, 𝑐) is also an experimental parameter, but set to the oracle

(Eq. (8)).

Importantly, we set the basemetric𝑉 to average relevance (which

we denote AvgRel) as in the main text. Therefore, for the majority of

experiments, we only show results on VRisk and 𝑉std, as 𝑉std =𝑉IW
holds (refer to Section 3.4). However, we also test on nDCG, DCG,

ERR [7], RBP [30], and Precision@k to show the generalizability of

VRisk and VRisker.

Compared Methods. We compare VRisker with the following:

Naive. The naive ranking approach naively optimizes the stan-

dard metric 𝑉std as in Eq. (3). It does not care about diversity.

IW-Greedy. IW-Greedy is a greedy maximization method that

aims tomaximize𝑉IW in Eq. (5). For linear basemetrics (e.g., average

relevance, DCG), IW-Greedy is strictly optimal, exactly matching

the Naive method. For non-linear base metrics, IW-Greedy has a

(1 − 1/𝑒) optimality guarantee [6].

xQuAD [38]. An intent-based diversification method. 𝜆xQuAD,

the weight controls the balance between relevance and diversity, is

set to 0.5
3
.

MMR [4]. A diversification method that intends to maximize

the coverage without relying on intents. Similarity of documents is

computed by measuring the cosine similarity of TF-IDF vectors of

document texts for search tasks, and tags and titles for the recom-

mendation tasks. 𝜆MMR, the weight controls the balance between

relevance and diversity, is set to 0.5
3
.

For all main experiments, we also give comparisons with IA-

SELECT [1], FA*IR [57], and Calibrated Recommendations (CR) [41]

in Appendix B.4.

Unless specified otherwise, instead of reporting the raw metrics,

results are shown as a percentage compared to the Naive ranking,

so that all curves share the same 100% center line, making the trade-

off between 𝑉Risk and average performance (i.e., 𝑉std / 𝑉IW) more

visible. For each obj ∈ {Risk, IW, std}, we set

Δ𝑉obj (𝑅𝑘 ) =
𝑉obj (𝑅𝑘 )

𝑉obj (Naive(𝑞))
× 100. (17)

For transparency, for each experiment, we also report the results

on the raw metrics in Appendix B.4. Note that Δ𝑉IW = Δ𝑉std for
linear bases, so we do not show both in most results.

3
We sweep this in Appendix B.4 and confirm that it does not change the conclusion.
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Figure 2: VRisker is robust across base metrics 𝑉 . The plots show how different methods perform on varying base metrics 𝑉 ,
tested on NTCIR INTENT-2 (left), TRECWeb 2012 (middle), and MovieLens 32M (right). The top figures evaluate risk, Δ𝑉Risk
(smaller is more robust), which measures the expected loss of the worst 𝛽-fraction of intents. The bottom figures evaluate the
average performance, Δ𝑉IW and Δ𝑉std (larger is better). All values are relative to Naive = 100%. (𝑘 = 10, 𝛽 = 0.10)

The values shown are the Δ𝑉obj (𝑅𝑘 ) averaged on all queries
4
.

The error bars indicate the 95% confidence interval, calculated by

treating each query/user as an independent observation drawn at

random from the population. We additionally provide statistical

significance testing in Appendix B.1.

6.2 Results and Q&As
We present our results via the following Q&As.

Q: Does VRisker work on different base metrics?
A: VRisker performs robustly across various base metrics, while

existing methods are unstable and vulnerable.

Figure 2 compares the use of different base metrics 𝑉 : AvgRel

(average relevance, the default), nDCG, DCG, Expected Reciprocal

Rank (ERR) [6, 7], Rank Biased Precision (RBP) on 𝑝 = 0.8 [30], and

Precision@k. For Precision@k, we binarize the relevance labels

via threshold (relmax + relmin)/2. We compare methods on naive-

relative VRisk (Δ𝑉Risk) with 𝛽 = 0.10, standard metric (Δ𝑉std), and
IW-metric (Δ𝑉IW), where Naive is at 100%.

While VRisker has a (1 − 1/𝑒) guarantee for modular base met-

rics (e.g., AvgRel and Precision@𝑘), we observe that VRisker is

about 20-40% more robust than naive on other non-modular base

metrics as well. Furthermore, VRisker only decreases the standard

performance (𝑉std) by about 0-10%.

Other diversification methods are barely more robust, or even

less robust, than the naive baseline. Aswe have argued in Section 3.4,

IW-based diversification methods (i.e., IW-Greedy and xQuAD) are

often very similar to the naive baseline, even when the base metrics

are not linear. Interestingly, on base metric nDCG, IW-Greedy and

the Naive algorithm behave exactly the same on all experimented

4
Note that we cannot compare with query-level robustness methods [18, 50], as they

do not take the average on all queries, so cannot be compared on the same scale.

settings and queries, despite nDCG not being linear (see Eq. (6)).

This is because the greedy marginal at each rank reduces to sorting

documents by expected gain under intent weights.

Q: How does the risk level, 𝛽, affect the performance?

Figure 3: VRisk/VRisker’s pessimism is controllable via 𝛽 . The
plots show results on VRisk and 𝑉std (= 𝑉IW).

A: As we make evaluation more pessimistic (smaller 𝛽), average

performance decreases, demonstrating the tunability of VRisk &

VRisker.

Figure 3 shows the performance of different methods when we

vary the pessimism, 𝛽 . Recall that a smaller 𝛽 focuses on a smaller

worst-case tail of intents. The results demonstrate a clear trade-off

between standard performance (i.e., 𝑉std / 𝑉IW) and VRisk, which

is a practical property discussed in Section 4.1. For example, when

𝛽 = 0.05, VRisker has about 20-30% less worst-case loss, while

sacrificing about 3-5% in standard performance. In contrast, when
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𝛽 = 0.8, VRisker reduces risk by about 2-3%, while having lost

almost nothing in terms of the standard performance. When the

platform should prioritize robustness over standard performance,

𝛽 should be tuned lower.

Q: How does ranking length affect performance?

Figure 4: VRisker is robust to ranking length.

A: The average performance of VRisker improves as the ranking

length increases, while keeping consistent robustness.

Figure 4 compares the performance on different ranking lengths

on the three datasets. VRisker minimizes the worst 𝛽-fraction

loss consistently compared to the alternatives, with a 20-30% de-

crease. We also observe that in terms of the standard performance

(𝑉std/𝑉IW), VRisker performs better as the ranking is longer. In the

best case, in INTENT-2 𝑘 = 25, we observe 33% reduction in VRisk

while sacrificing only 2% in standard performance.

Q: Do we need perfectly accurate intent probabilities?

Figure 5: The results are consistent when intent probabilities
with noise added. VRisk and 𝑉std shown with raw values.

A: Preferable, but VRisker degrades more gracefully under noise.

Figure 5 plots the performance of diversification methods on

various noise levels. For each intent probability, we perturb each

probability as Pr(𝑐 | 𝑞) ← Pr(𝑐 | 𝑞) + 𝜖𝑐 , with 𝜖𝑐 ∼ N(0, 𝜎2).
We then clip to [0, 1] and renormalize across intents. 𝜎2

controls

the noise level, where the larger the value, the more noise when

running the algorithms. We then evaluate using the true intent

probabilities.

We observe that the VRisk increases for all methods, meaning

less robustness. This is predictable since noisy intent probabilities

trigger noise in both raw relevance calculation and IW metric cal-

culation. Yet, VRisker maintains the lowest risk no matter the noise.

Additionally, we observe that in terms of the standard performance,

VRisker performs comparatively better as more noise is injected. At

𝜎2 = 0.5, VRisker performs the best on all datasets. This is counter-

intuitive, but we hypothesize that this is because VRisker satisfies

the main intents even with low predicted intent probabilities.

Q: How optimal is VRisker?

0.0

0.2

0.122
0.137

0.160

Optimal VRisker Naive/IW-Greedy

VRisk performance (  better)

0.0

0.6

0.358 0.376

0.511

Optimal VRisker Naive/IW-Greedy

nDCG-Risk performance (  better)

Figure 6: VRisker is near optimal. Values are averaged over
all three datasets. Results on other bases are in Figure 10.

A: VRisker is nearly optimal for various base metrics.

Figure 6 shows the comparison of VRisker against the optimal

performance, averaged over all three datasets. Here, Optimal is

computed exactly per query by solving the VRisk objective as a

MILP (PuLP + CBC solver). We show results tested on VRisk (i.e.,

base metric is average relevance) and nDCG, but we show results

on other base metrics in Appendix B.2. As discussed in Section 5.1,

VRisker is (1 − 1/𝑒) optimal when the base metric is modular (left-

hand chart). As discussed in Section 5.2, for non-modular bases

VRisker is not merely a heuristic. As a result, we observe that

VRisker is near optimal in all experimented settings, reassuring the

robustness of the approach.

Q: How does target level 𝑉tgt affect the evaluation?

Figure 7: VRisker works on various baseline target levels, and
the optimality of it is a tunable parameter for adjusting safety.
Results shown in raw values.

A:VRisk/VRisker works on various baseline target levels, and target
optimality provides a knob to trade off robustness and utility.
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In our framework, 𝑉tgt (𝑞, 𝑐) can be set to the oracle value or

any baseline system. The latter is common in prior IR robustness

literature [18, 50], but is now applied within a query.

We test how changing the target level (i.e., baseline system)

changes the evaluation and performance. We do this by testing

on different optimality of 𝑉tgt, where a smaller value means less

optimal. For example, if the optimality is 0.2, this means 20% of the

oracle

𝑉tgt (𝑞, 𝑐) = 0.2 ×max

𝑅′
𝑘

𝑉 (𝑅′
𝑘
| 𝑞, 𝑐). (18)

If VRisk=0.0 at target optimality 0.2, this implies that every intent

attains at least 20% of its per-intent oracle value.

From Figure 7, we observe that VRisk is smaller as the target

level is less optimal. This is simply because the target level is more

achievable, resulting in lower loss. At optimality 0.2, we observe

that VRisker achieves VRisk=0.0, where all intents satisfy at least

20% of the oracle value. Once perfect VRisk is achieved, VRisker

could focus solely on raising the standard performance, because the

IW tie-break takes over (see Algorithm 1). This can be observed in

the bottom figures, where VRisker achieves near-optimal or optimal

standard performance at 0.2. Moreover, in the Web’12 and Movie-

Lens datasets, VRisker achieves perfect VRisk and near-optimal

standard performance at 0.4 target optimality as well.

This is a clear and interesting trade-off. Lowering the target opti-

mality can assure minimal satisfaction for all intents and also raise

the standard performance. On the other hand, higher target optimal-

ity makes VRisker strictly safer and makes VRisk more pessimistic.

Lastly, another interesting property is that when the target level

is the oracle, minimization of loss is exactly the maximization of

value. This property is especially relevant in production scenarios

where service-level objectives are framed in terms of minimum

per-intent quality guarantees.

By tuning 𝑉tgt (and 𝛽), practitioners can directly express and en-

force these guarantees while preserving flexibility for the remainder

of the ranking.

Q: How fast is VRisker?
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Figure 8: Average runtime on MovieLens 32M (ms/query).
Per-query candidate document size is 71,933.

A: Runtime is comparable to standard diversification methods.

Figure 8 reports per-query runtime
5
to produce a top-10 ranking

on MovieLens 32M (per-query candidate set size is 𝑛 = 71, 933). We

5
MacBook Pro (M2, 2022, 16 GB), single-threaded NumPy/BLAS.

compare with three additional baseline methods: IA-SELECT [1],

FA*IR [57], and Calibrated Recommendations (CR) [41] (details of

these methods are in Appendix B.4).

VRisker achieves 7.84 ms/query, which is within 1% of xQuAD,

and faster than IA-SELECT and Calibrated Recommendation (CR).

As expected, greedy diversifiers incur overhead relative to Naive, a

simple expected-relevance sort, but the absolute latencies remain

very small. These results indicate that VRisker matches the runtime

profile of standard greedy diversifiers while delivering its robust-

ness benefits. The complexity of VRisker is shown mathematically

in Section 5.

Q: Do tie-breakers matter?
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Figure 9: Tie-breaking ablation for VRisker.

A: IW tie-breaker improves both robustness and utility.

When running VRisker, a tie occurs when multiple candidates

yield identical VRisk decreases at a position. When there is a tie,

VRisker picks the document that maximizes the IW metric (see

Algorithm 1). Figure 9 compares the performance of VRisker with

the IW tie-break versus a random tie-break. We observe that the

IW tie-breaker reduced tail risk by 7–14% while improving average

utility by 4–9% across INTENT-2, TREC Web’12, and MovieLens.

This is consistent with our objective: once the incremental risk

reduction is saturated at a rank, maximizing IW recovers the largest

utility without weakening the tail guarantee.

Q: Are existing diversification algorithms robust?
A: Generally, no.

In most experimental settings (Figures 3, 4, 5, 6, 7), existing di-

versification algorithms are no more robust than the naive ranking.

This is because the optimization of IW-metrics is identical to the

optimization of the standard metrics, as discussed in Section 3.4.

In Figure 2, we observe that while some (non-linear) base metrics

result in less risk, it is not consistent between datasets, and even

in the best case, the risk is larger than VRisker. We observe, as

Chapelle et al. [6] remark, that IW-Greedy and xQuAD on ERR

are fairly robust compared to the other metrics. Thus, if you really

need to use an IW-based diversification, we suggest using it with

ERR. However, in general, we recommend using VRisker, a tunable,

intuitive, baseline-relative, and most importantly robust method.

The appendix provides all results on raw values (i.e., not nor-

malized values) with three additional baseline methods. Figure 6 is

reported on all base metrics as well. Appendix B.3 also sweeps the

weights of the prior methods to show that the observed results and

discussions are not weight-dependent. The code to reproduce the

results is provided in https://github.com/RikiyaT/VRisk.

https://github.com/RikiyaT/VRisk


Diversification as Risk Minimization

7 Limitations
A key limitation, that is shared with prior intent-aware diversifica-

tionwork [1, 9, 37, 38, 52], is the need to estimate intent probabilities

Pr(𝑐 | 𝑞). While recent progress with LLMs makes intent discovery

and labeling increasingly tractable [39, 43], such estimates can be

biased and typically require calibration against logs or human judg-

ments. Encouragingly, our noise study (Figure 5) shows that VRisk

remains comparatively robust under perturbed intent distributions.

Our formulation and prior work [1, 9, 37, 38, 52] also assume

mutually exclusive intents per query, which simplifies analysis but

may not capture overlapping or hierarchical intents. In addition,

VRisk’s behavior depends on two policy parameters: the target level

𝑉tgt (𝑞, 𝑐) and the risk level 𝛽 . We study both empirically (Fig. 7,

Fig. 3), but different applications may prefer different settings.

8 Conclusion
This paper reframes diversification as within-query risk minimiza-
tion. First, we showed mathematically and empirically that the

most common diversification metrics favor majority intents just

like standard metrics, prioritizing vulnerable rankings. To address

this problem, we introduced VRisk, a CVaR-style, 𝛽-tunable metric

that quantifies tail risk. VRisk is intuitive and has various properties

that meet practitioner needs. Minimization of VRisk explicitly min-

imizes the chances of a user failing a search session. To minimize

VRisk efficiently, we propose VRisker, a greedy optimizer with a

(1− 1/𝑒) guarantee for modular base metrics and a data-dependent

bound for non-modular bases. Empirically, across INTENT-2, TREC

Web’12, and MovieLens 32M, VRisker reduced tail risk by up to 33%

with only ∼ 2% loss in average utility, while classic diversification

often matches Naive ranker in robustness.

For future work, we plan to learn intents jointly, extend to

session-level objectives, and integrate the idea of robustness in

generative texts like question answering.

Ethical Considerations
This work adheres to established ethical standards for research. All

evaluations were performed on publicly available datasets contain-

ing no personally identifiable information. The proposed methods

are intended to enhance user experience by improving diversity

and coverage in search and recommendation results.
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A Proofs
A.1 Proof of Proposition 2: NP-hardness

Proof. We reduce Weighted Max-𝑘-Cover to VRisk minimiza-

tion (with 𝑘 part of the input).
6

Given ground set𝑈 , weights𝑤 : 𝑈→R≥0, family {𝑆1, . . . , 𝑆𝑛} ⊆
2
𝑈
, and budget 𝑘 , build a single-query instance: intents C(𝑞) =𝑈

with

Pr(𝑢 | 𝑞) = 𝑤 (𝑢)
𝑊

, 𝑊 =
∑︁
𝑢∈𝑈

𝑤 (𝑢).

Create one document 𝑑 𝑗 per set 𝑆 𝑗 and set binary relevance

rel(𝑑 𝑗 | 𝑞,𝑢) = 1[𝑢 ∈ 𝑆 𝑗 ] .

Use the modular base metric and the target 𝑉tgt (𝑞,𝑢) = 1/𝑘 ; fix
𝛽 = 1.

For any length-𝑘 ranking 𝑅,

𝑉 (𝑅 | 𝑞,𝑢) = 1

𝑘

∑︁
𝑑∈𝑅

1[𝑢 ∈ 𝑆 (𝑑)],

ℓ (𝑅,𝑞,𝑢) =max

{
0,
1

𝑘
−𝑉 (𝑅 | 𝑞,𝑢)

}
=

1

𝑘
1

[
𝑢 ∉

⋃
𝑑∈𝑅

𝑆 (𝑑)
]
.

Thus

𝑉Risk (𝑅 | 𝑞; 1) =
∑︁
𝑢

Pr(𝑢 | 𝑞) ℓ (𝑅, 𝑞,𝑢)

=
1

𝑘

©­«1 − 1

𝑊

∑︁
𝑢∈∪𝑑∈𝑅𝑆 (𝑑 )

𝑤 (𝑢)ª®¬ .
Minimizing 𝑉Risk (𝑅 | 𝑞; 1) is equivalent to maximizing the covered

weight in Weighted Max-𝑘-Cover. Hence VRisk minimization is

NP-hard. □

A.2 Proof of Theorem 1: (1 − 1/𝑒)-Optimality
Guarantee

Proof of Theorem 1. Let

VRisk(𝑅) :=𝑉Risk (𝑅 | 𝑞; 𝛽) =min

𝜁 ∈𝑅

[
𝜁+ 1

𝛽

∑︁
𝑖

Pr(𝑐𝑖 | 𝑞) (ℓ𝑖 (𝑅)−𝜁 )+
]
.

For the discrete nonnegative losses ℓ𝑖 (𝑅), a minimizer 𝜁★ always

lies in [0,max𝑖 ℓ𝑖 (𝑅)], hence 𝜁★ ≥ 0. For any fixed 𝜁 ≥ 0 define

𝐻𝜁 (𝑅) := 𝜁 + 1

𝛽

∑︁
𝑖

𝑝𝑖
(
ℓ𝑖 (𝑅) − 𝜁

)
+,

𝑝𝑖 := Pr(𝑐𝑖 | 𝑞).

Then VRisk(𝑅) =min𝜁 𝐻𝜁 (𝑅).

6
For fixed constant 𝑘 , brute force𝑂 (𝑛𝑘 ) is polynomial.

Step 1. Fix 𝜁 ≥ 0 and intent 𝑖 . Write 𝐶𝑖 :=𝑉tgt (𝑞, 𝑐𝑖 ) − 𝜁 ≥ 0 and

𝑠𝑖 (𝑅) =
∑

𝑑∈𝑅 𝑣𝑖 (𝑑) with 𝑣𝑖 (𝑑) := rel(𝑑 | 𝑞, 𝑐𝑖 )/𝑘 ≥ 0. For 𝑒 ∉ 𝑅,

Δ
(𝜁 )
𝑖
(𝑅; 𝑒) :=

(
𝐶𝑖 − 𝑠𝑖 (𝑅)

)
+ −

(
𝐶𝑖 − 𝑠𝑖 (𝑅) − 𝑣𝑖 (𝑒)

)
+

=max{0,min{𝑣𝑖 (𝑒), 𝐶𝑖 − 𝑠𝑖 (𝑅)}}.

Hence if 𝑅 ⊆ 𝑆 then 𝑠𝑖 (𝑅) ≤ 𝑠𝑖 (𝑆) and thus Δ
(𝜁 )
𝑖
(𝑅; 𝑒) ≥ Δ

(𝜁 )
𝑖
(𝑆 ; 𝑒).

Summing with nonnegative weights 𝑝𝑖/𝛽 gives, for all 𝑅 ⊆ 𝑆 and

𝑒 ∉ 𝑆 ,

𝐻𝜁 (𝑅) − 𝐻𝜁 (𝑅 ∪ {𝑒}) ≥ 𝐻𝜁 (𝑆) − 𝐻𝜁 (𝑆 ∪ {𝑒}). (∗)

That is, the risk drop at fixed 𝜁 has diminishing returns.

Step 2 (one-step greedy progress). Let 𝑅𝑡 be the greedy set after 𝑡

steps and let 𝜁𝑡 ∈ argmin𝜁 𝐻𝜁 (𝑅𝑡 ). For any 𝑒 ∉ 𝑅𝑡 ,

VRisk(𝑅𝑡 ) − VRisk(𝑅𝑡 ∪ {𝑒}) ≥ 𝐻𝜁𝑡 (𝑅𝑡 ) − 𝐻𝜁𝑡 (𝑅𝑡 ∪ {𝑒})

since VRisk(𝑅𝑡 ) = 𝐻𝜁𝑡 (𝑅𝑡 ) and VRisk(𝑅𝑡 ∪ {𝑒}) ≤ 𝐻𝜁𝑡 (𝑅𝑡 ∪ {𝑒}).
Let 𝑂 be an optimal 𝑘-set. Using (∗) and averaging over 𝑒 ∈ 𝑂 ,

max

𝑒∉𝑅𝑡

[
𝐻𝜁𝑡 (𝑅𝑡 ) − 𝐻𝜁𝑡 (𝑅𝑡 ∪ {𝑒})

]
≥ 1

𝑘

∑︁
𝑒∈𝑂

[
𝐻𝜁𝑡 (𝑅𝑡 ) − 𝐻𝜁𝑡 (𝑅𝑡 ∪ {𝑒})

]
≥ 1

𝑘

(
𝐻𝜁𝑡 (𝑅𝑡 ) − 𝐻𝜁𝑡 (𝑅𝑡 ∪𝑂)

)
.

Monotonicity of 𝐻𝜁𝑡 in 𝑅 gives 𝐻𝜁𝑡 (𝑅𝑡 ∪ 𝑂) ≤ 𝐻𝜁𝑡 (𝑂), and by

definition VRisk(𝑂) =min𝜁 𝐻𝜁 (𝑂) ≤ 𝐻𝜁𝑡 (𝑂). Therefore

𝐻𝜁𝑡 (𝑅𝑡 )−𝐻𝜁𝑡 (𝑅𝑡∪𝑂) ≥ 𝐻𝜁𝑡 (𝑅𝑡 )−𝐻𝜁𝑡 (𝑂) ≥ VRisk(𝑅𝑡 )−VRisk(𝑂).

Combining the displays and taking greedy 𝑒𝑡+1,

VRisk(𝑅𝑡 ) − VRisk(𝑅𝑡+1) ≥
1

𝑘

(
VRisk(𝑅𝑡 ) − VRisk(𝑂)

)
.

Step 3. Let Δ𝑡 := VRisk(𝑅𝑡 ) − VRisk(𝑂). Then

Δ𝑡+1 ≤
(
1 − 1

𝑘

)
Δ𝑡 ,

so

Δ𝑘 ≤
(
1 − 1

𝑘

)𝑘
Δ0 ≤ 𝑒−1Δ0 .

Equivalently,

VRisk(∅) − VRisk(𝑅𝑘 ) ≥
(
1 − 1

𝑒

) (
VRisk(∅) − VRisk(𝑂)

)
,

i.e., the greedy 𝑅𝑘 captures at least (1 − 1/𝑒) of the optimal risk

reduction. □

A.3 Proof of Theorem 2: NDCG-Risk
Approximation

Proof of Theorem 2. Let

𝐹 (𝑅) =𝑉Risk (∅) −𝑉Risk (𝑅) = Δ(𝑅)

be the risk–reduction set function. 𝐹 is monotone because adding a

document can only lower 𝑉Risk.

https://doi.org/10.1145/3132847.3132938
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Step 1: submodularity ratio. For any two prefixes 𝐴 ⊆ 𝐵 ⊆ D
and any document 𝑑 ∉ 𝐵 define the marginal gains

Δ(𝑑 | 𝑋 ) = 𝐹 (𝑋 ∪ {𝑑}) − 𝐹 (𝑋 ), 𝑋 ∈ {𝐴, 𝐵}.
Write |𝐴| = 𝑟 , |𝐵 | = 𝑡 (𝑟 < 𝑡 < 𝑘). With the NDCG discount vector

𝑤1 ≥ · · · ≥ 𝑤𝑘 , 𝑑 is placed at position 𝑟 + 1 in 𝐴 ∪ {𝑑} and 𝑡 + 1 in
𝐵 ∪ {𝑑}. For each intent 𝑐 the per–intent gain satisfies

NDCG𝑐 (𝐴 ∪ {𝑑}) − NDCG𝑐 (𝐴) =
𝑤𝑟+1 𝑔𝑑,𝑐
IDCG𝑐

,

NDCG𝑐 (𝐵 ∪ {𝑑}) − NDCG𝑐 (𝐵) =
𝑤𝑡+1 𝑔𝑑,𝑐
IDCG𝑐

,

where 𝑔𝑑,𝑐 = 2
rel(𝑑 |𝑞,𝑐 ) − 1 ≥ 0. Because 𝑉Risk is a positive convex

combination of these per–intent gains clipped by a hinge at 𝜁 ,

the clipping can only reduce both numerators by the same amount.
Hence

Δ(𝑑 | 𝐵) ≥ 𝑤𝑡+1
𝑤𝑟+1

Δ(𝑑 | 𝐴)

≥ 𝑤𝑘

𝑤1

Δ(𝑑 | 𝐴)

≥ 𝑤𝑘∑𝑘
𝑖=1𝑤𝑖︸   ︷︷   ︸
=𝛾

Δ(𝑑 | 𝐴).

Thus the submodularity ratio [14] of 𝐹 is lower-bounded by 𝛾 .

Step 2: greedy approximation. For any monotone set function

with submodularity ratio 𝛾 , the standard greedy algorithm attains

the guarantee

𝐹 (𝑅𝑘 ) ≥ (1 − 𝑒−𝛾 )𝐹 (𝑅★𝑘 )
under a cardinality constraint 𝑘 . Applying this to 𝐹 = Δ proves

Theorem 2. □

B Additional Experiments and Results
B.1 Statistical Significance Testing
Following IR best practice, we treat the set of queries in each bench-

mark as a sample from a larger population and test the null hy-

pothesis that two systems have equal expected performance across

that population. For every query 𝑞 we compute the paired dif-

ference 𝑑𝑞 = 𝑀𝐴 (𝑞) − 𝑀𝐵 (𝑞) where 𝑀 is either our risk metric

𝑉Risk (𝑅𝑘 |𝑞; 𝛽 = 0.10) or the underlying expected-utility metric 𝑉std.

We then apply (i) a two-sided Wilcoxon signed–rank test and (ii) a

paired randomization test with 𝐵 = 100,000 permutations.

Table 3: Paired significance tests at 𝛽 = 0.10, 𝑘 = 10.
Asterisks mark values that remain below 𝛼 = 0.05 after
Holm–Bonferroni correction over all comparisons.

Dataset Metric

Wilcoxon 𝑝 Perm. 𝑝

vs Naive vs xQuAD vs Naive vs xQuAD

INTENT-2

𝑉Risk 1.1 × 10
−13*

1.8 × 10
−13* < 10

−5* < 10
−5*

𝑉std 1.2 × 10
−11*

1.2 × 10
−11* < 10

−5* < 10
−5*

WEB

𝑉Risk 7.7 × 10
−6*

1.4 × 10
−6* < 10

−5*
1.0 × 10

−5*

𝑉std 5.8 × 10
−9*

5.8 × 10
−9* < 10

−5* < 10
−5*

ML 32M

𝑉Risk 7.5 × 10
−65*

9.6 × 10
−65* < 10

−5* < 10
−5*

𝑉std 2.6 × 10
−10*

1.4 × 10
−1 < 10

−5* < 10
−5*

Table 3 reports the resulting 𝑝-values. Asterisks mark values that

remain below 𝛼 = 0.05 after Holm–Bonferroni correction over all

comparisons.

B.2 Additional Results on Optimality
Figure 10 provides the full list of experiments on the optimality

of VRisker (extended version of Figure 6 in the main text). We ob-

serve that VRisker is nearly optimal on all metrics. We also observe

that the optimal performance, in return, lowers the standard per-

formance on all metrics. This demonstrates that VRisker is robust

while being strong in standard performance.

B.3 Sensitivity Analysis on Prior Methods
xQuAD, MMR, FA*IR, and CR all have a weight that balances be-

tween relevance and diversity/fairness/calibration. Although they

have different notations for weights, we generalize as 𝜆method in

our paper. Essentially, using the weight, they optimize below

(1 − 𝜆method)𝑉std (𝑑 | 𝑞, 𝑅) + 𝜆method𝑉X (𝑑 | 𝑞, 𝑅).

Thus 𝜆=0 reduces to pure relevance (Naive/IW), and 𝜆=1 to the

pure diversity/fairness/calibration.

Figure 11 shows the sensitivity experiment on the same settings

as the main text.

Across NTCIR INTENT-2, TRECWeb’12, and MovieLens, sweep-

ing 𝜆 confirms a consistent pattern: (i) at 𝜆=1 all classical baselines

become diversity/calibration-only and suffer catastrophic drops in

both 𝑉std (=𝑉IW) and 𝑉Risk, (ii) for 𝜆 ∈ [0, 0.8] they track Naive on

both risk and utility, offering little worst-case protection, and (iii)

VRisker dominates on 𝑉Risk,𝑘 while maintaining high 𝑉std.

This justifies the fixed 𝜆 choice in the main text and shows that

the conclusions are not an artifact of particular hyperparameters.

B.4 Additional Results
In this appendix, we provide experiment results on the main text

but with more baselines and with the raw metric values if they are

normalized on the main text.

The additional baselines are:

IA-SELECT [1]. This method builds a ranking that minimizes

the chances that users will not click on any item in a ranking.

Since IA-SELECT works best on a cascade assumption with click

probabilities instead of relevance, we normalize the relevance scores

to [0, 1] when computing.

Calibrated Recommendation (CR) [41]. This method aims

to match the intent-probability proportions to the per-intent utility

proportions in the ranking. 𝜆CR is the weight which controls the

balance between relevance and calibration, and is set to 0.5.

FA*IR [57]. This method aims to fairly expose each group of

documents in the ranking. In our case, we target intent-probability

distribution as a fairness objective, trading off between relevance

and fairness via the weight 𝜆FA*IR (set to 0.5).

Figures 12, 13, 14, 15, and 16 report the additional experimental

results Figures 2, 3, 4, 5, and 7 in the main text respectively.

We observe that the additional baselines are not robust or equal

as robust as the naive baseline. This is mainly because the settings

and the objectives of the methods are conceptually different from

our objective. IA-SELECT only functions under the use of click
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Risk vs. Performance Comparison

Figure 10: Optimality of VRisker. For each base metric, the left shows VRisk (lower is better) and the right shows 𝑉IW (higher is
better). Figure 6 of the main text.

Figure 11: 𝜆-sensitivity (xQuAD, MMR, FA*IR, CR) on three datasets. As 𝜆→1 (pure diversity/calibration), all classical baselines
collapse in𝑉std and do not provide meaningful tail-risk reduction; for intermediate 𝜆 they behave similarly to Naive. In contrast,
VRisker (no 𝜆) remains consistently robust with small utility loss.

probabilities under the cascade user assumption. FA*IR and CR respectively focus on fairness and calibration, which are different

from diversity and robustness.
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Figure 12: Risk and utility across base metrics. Δ𝑉Risk (lower is better) and Δ𝑉std/Δ𝑉IW (higher is better) for AvgRel, nDCG, DCG,
ERR, RBP, and Prec@k on INTENT-2, WEB’12, and MovieLens; Naive = 100%. Figure 2 of the main text.

Figure 13: Effect of 𝛽 (pessimism level). As 𝛽 decreases, VRisker reduces tail loss more aggressively with a manageable drop in
average utility. Figure 3 of the main text.
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Figure 14: Effect of ranking length 𝑘 . VRisker’s utility improves as 𝑘 grows while maintaining substantially lower tail risk than
baselines. Figure 4 of the main text.

Figure 15: Noise in intent probabilities. VRisker remains most robust under Gaussian noise added to 𝑃𝑟 (𝑐 |𝑞). Figure 5 of the
main text.
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Figure 16: Target optimality sweep. Lower target optimality yields smaller losses and lets VRisker focus on utility once𝑉Risk ≈ 0.
Figure 7 of the main text.
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